/* * The MIT License (MIT) * * Copyright (c) 2020 Koji Kitayama * Portions copyrighted (c) 2021 Roland Winistoerfer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" // Since TinyUSB doesn't use SOF for now, and this interrupt too often (1ms interval) // We disable SOF for now until needed later on #define USE_SOF 0 #if CFG_TUD_ENABLED && defined(TUP_USBIP_RUSB2) #include "device/dcd.h" #include "rusb2_type.h" #if TU_CHECK_MCU(OPT_MCU_RX63X, OPT_MCU_RX65X, OPT_MCU_RX72N) #include "rusb2_rx.h" #elif TU_CHECK_MCU(OPT_MCU_RAXXX) #include "rusb2_ra.h" #if defined(RENESAS_CORTEX_M23) #define D0FIFO CFIFO #define D0FIFOSEL CFIFOSEL #define D0FIFOSEL_b CFIFOSEL_b #define D1FIFOSEL CFIFOSEL #define D1FIFOSEL_b CFIFOSEL_b #define D0FIFOCTR CFIFOCTR #define D0FIFOCTR_b CFIFOCTR_b #endif #else #error "Unsupported MCU" #endif //--------------------------------------------------------------------+ // MACRO TYPEDEF CONSTANT ENUM //--------------------------------------------------------------------+ /* Start of definition of packed structs (used by the CCRX toolchain) */ TU_ATTR_PACKED_BEGIN TU_ATTR_BIT_FIELD_ORDER_BEGIN typedef struct TU_ATTR_PACKED { void *buf; /* the start address of a transfer data buffer */ uint16_t length; /* the number of bytes in the buffer */ uint16_t remaining; /* the number of bytes remaining in the buffer */ struct { uint32_t ep : 8; /* an assigned endpoint address */ uint32_t ff : 1; /* `buf` is TU_FUFO or POD */ uint32_t : 0; }; } pipe_state_t; TU_ATTR_PACKED_END // End of definition of packed structs (used by the CCRX toolchain) TU_ATTR_BIT_FIELD_ORDER_END // Transfer conditions specifiable for each pipe: // - Pipe 0: Control transfer with 64-byte single buffer // - Pipes 1 and 2: Bulk isochronous transfer continuous transfer mode with programmable buffer size up // to 2 KB and optional double buffer // - Pipes 3 to 5: Bulk transfer continuous transfer mode with programmable buffer size up to 2 KB and // optional double buffer // - Pipes 6 to 9: Interrupt transfer with 64-byte single buffer enum { PIPE_1ST_BULK = 3, PIPE_1ST_INTERRUPT = 6, PIPE_COUNT = 10, }; typedef struct { pipe_state_t pipe[10]; uint8_t ep[2][16]; /* a lookup table for a pipe index from an endpoint address */ } dcd_data_t; static dcd_data_t _dcd; //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ static unsigned find_pipe(unsigned xfer) { switch (xfer) { case TUSB_XFER_ISOCHRONOUS: for (int i = 1; i < PIPE_1ST_BULK; ++i) { if (0 == _dcd.pipe[i].ep) return i; } break; case TUSB_XFER_BULK: for (int i = PIPE_1ST_BULK; i < PIPE_1ST_INTERRUPT; ++i) { if (0 == _dcd.pipe[i].ep) return i; } for (int i = 1; i < PIPE_1ST_BULK; ++i) { if (0 == _dcd.pipe[i].ep) return i; } break; case TUSB_XFER_INTERRUPT: for (int i = PIPE_1ST_INTERRUPT; i < PIPE_COUNT; ++i) { if (0 == _dcd.pipe[i].ep) return i; } break; default: /* No support for control transfer */ break; } return 0; } static volatile uint16_t* get_pipectr(rusb2_reg_t *rusb, unsigned num) { if (num) { return (volatile uint16_t*)&(rusb->PIPE_CTR[num - 1]); } else { return (volatile uint16_t*)&(rusb->DCPCTR); } } static volatile reg_pipetre_t* get_pipetre(rusb2_reg_t *rusb, unsigned num) { volatile reg_pipetre_t* tre = NULL; if ((1 <= num) && (num <= 5)) { tre = (volatile reg_pipetre_t*)&(rusb->PIPE_TR[num - 1].E); } return tre; } static volatile uint16_t* ep_addr_to_pipectr(uint8_t rhport, unsigned ep_addr) { rusb2_reg_t *rusb = RUSB2_REG(rhport); const unsigned epn = tu_edpt_number(ep_addr); if (epn) { const unsigned dir = tu_edpt_dir(ep_addr); const unsigned num = _dcd.ep[dir][epn]; return get_pipectr(rusb, num); } else { return get_pipectr(rusb, 0); } } static uint16_t edpt0_max_packet_size(rusb2_reg_t* rusb) { return rusb->DCPMAXP_b.MXPS; } static uint16_t edpt_max_packet_size(rusb2_reg_t *rusb, unsigned num) { rusb->PIPESEL = num; return rusb->PIPEMAXP; } static inline void pipe_wait_for_ready(rusb2_reg_t * rusb, unsigned num) { while ( rusb->D0FIFOSEL_b.CURPIPE != num ) {} while ( !rusb->D0FIFOCTR_b.FRDY ) {} } //--------------------------------------------------------------------+ // Pipe FIFO //--------------------------------------------------------------------+ // Write data buffer --> hw fifo static void pipe_write_packet(rusb2_reg_t * rusb, void *buf, volatile void *fifo, unsigned len) { (void) rusb; volatile uint16_t *ff16; volatile uint8_t *ff8; // Highspeed FIFO is 32-bit if ( rusb2_is_highspeed_reg(rusb) ) { // TODO 32-bit access for better performance ff16 = (volatile uint16_t*) ((uintptr_t) fifo+2); ff8 = (volatile uint8_t *) ((uintptr_t) fifo+3); }else { ff16 = (volatile uint16_t*) fifo; ff8 = ((volatile uint8_t*) fifo); } uint8_t const* buf8 = (uint8_t const*) buf; while (len >= 2) { *ff16 = tu_unaligned_read16(buf8); buf8 += 2; len -= 2; } if (len > 0) { *ff8 = *buf8; ++buf8; } } // Read data buffer <-- hw fifo static void pipe_read_packet(rusb2_reg_t * rusb, void *buf, volatile void *fifo, unsigned len) { (void) rusb; // TODO 16/32-bit access for better performance uint8_t *p = (uint8_t*)buf; volatile uint8_t *reg = (volatile uint8_t*)fifo; /* byte access is always at base register address */ while (len--) *p++ = *reg; } // Write data sw fifo --> hw fifo static void pipe_write_packet_ff(rusb2_reg_t * rusb, tu_fifo_t *f, volatile void *fifo, uint16_t total_len) { tu_fifo_buffer_info_t info; tu_fifo_get_read_info(f, &info); uint16_t count = tu_min16(total_len, info.len_lin); pipe_write_packet(rusb, info.ptr_lin, fifo, count); uint16_t rem = total_len - count; if (rem) { rem = tu_min16(rem, info.len_wrap); pipe_write_packet(rusb, info.ptr_wrap, fifo, rem); count += rem; } tu_fifo_advance_read_pointer(f, count); } // Read data sw fifo <-- hw fifo static void pipe_read_packet_ff(rusb2_reg_t * rusb, tu_fifo_t *f, volatile void *fifo, uint16_t total_len) { tu_fifo_buffer_info_t info; tu_fifo_get_write_info(f, &info); uint16_t count = tu_min16(total_len, info.len_lin); pipe_read_packet(rusb, info.ptr_lin, fifo, count); uint16_t rem = total_len - count; if (rem) { rem = tu_min16(rem, info.len_wrap); pipe_read_packet(rusb, info.ptr_wrap, fifo, rem); count += rem; } tu_fifo_advance_write_pointer(f, count); } //--------------------------------------------------------------------+ // Pipe Transfer //--------------------------------------------------------------------+ static bool pipe0_xfer_in(rusb2_reg_t* rusb) { pipe_state_t *pipe = &_dcd.pipe[0]; const unsigned rem = pipe->remaining; if (!rem) { pipe->buf = NULL; return true; } const uint16_t mps = edpt0_max_packet_size(rusb); const uint16_t len = tu_min16(mps, rem); void *buf = pipe->buf; if (len) { if (pipe->ff) { pipe_write_packet_ff(rusb, (tu_fifo_t*)buf, (volatile void*)&rusb->CFIFO, len); } else { pipe_write_packet(rusb, buf, (volatile void*)&rusb->CFIFO, len); pipe->buf = (uint8_t*)buf + len; } } if (len < mps) { rusb->CFIFOCTR = RUSB2_CFIFOCTR_BVAL_Msk; } pipe->remaining = rem - len; return false; } static bool pipe0_xfer_out(rusb2_reg_t* rusb) { pipe_state_t *pipe = &_dcd.pipe[0]; const unsigned rem = pipe->remaining; const uint16_t mps = edpt0_max_packet_size(rusb); const uint16_t vld = rusb->CFIFOCTR_b.DTLN; const uint16_t len = tu_min16(tu_min16(rem, mps), vld); void *buf = pipe->buf; if (len) { if (pipe->ff) { pipe_read_packet_ff(rusb, (tu_fifo_t*)buf, (volatile void*)&rusb->CFIFO, len); } else { pipe_read_packet(rusb, buf, (volatile void*)&rusb->CFIFO, len); pipe->buf = (uint8_t*)buf + len; } } if (len < mps) { rusb->CFIFOCTR = RUSB2_CFIFOCTR_BCLR_Msk; } pipe->remaining = rem - len; if ((len < mps) || (rem == len)) { pipe->buf = NULL; return true; } return false; } static bool pipe_xfer_in(rusb2_reg_t* rusb, unsigned num) { pipe_state_t *pipe = &_dcd.pipe[num]; const unsigned rem = pipe->remaining; if (!rem) { pipe->buf = NULL; return true; } rusb->D0FIFOSEL = num | RUSB2_FIFOSEL_MBW_16BIT | (TU_BYTE_ORDER == TU_BIG_ENDIAN ? RUSB2_FIFOSEL_BIGEND : 0); const uint16_t mps = edpt_max_packet_size(rusb, num); pipe_wait_for_ready(rusb, num); const uint16_t len = tu_min16(rem, mps); void *buf = pipe->buf; if (len) { if (pipe->ff) { pipe_write_packet_ff(rusb, (tu_fifo_t*)buf, (volatile void*)&rusb->D0FIFO, len); } else { pipe_write_packet(rusb, buf, (volatile void*)&rusb->D0FIFO, len); pipe->buf = (uint8_t*)buf + len; } } if (len < mps) { rusb->D0FIFOCTR = RUSB2_CFIFOCTR_BVAL_Msk; } rusb->D0FIFOSEL = 0; while (rusb->D0FIFOSEL_b.CURPIPE) {} /* if CURPIPE bits changes, check written value */ pipe->remaining = rem - len; return false; } static bool pipe_xfer_out(rusb2_reg_t* rusb, unsigned num) { pipe_state_t *pipe = &_dcd.pipe[num]; const uint16_t rem = pipe->remaining; rusb->D0FIFOSEL = num | RUSB2_FIFOSEL_MBW_8BIT; const uint16_t mps = edpt_max_packet_size(rusb, num); pipe_wait_for_ready(rusb, num); const uint16_t vld = rusb->D0FIFOCTR_b.DTLN; const uint16_t len = tu_min16(tu_min16(rem, mps), vld); void *buf = pipe->buf; if (len) { if (pipe->ff) { pipe_read_packet_ff(rusb, (tu_fifo_t*)buf, (volatile void*)&rusb->D0FIFO, len); } else { pipe_read_packet(rusb, buf, (volatile void*)&rusb->D0FIFO, len); pipe->buf = (uint8_t*)buf + len; } } if (len < mps) { rusb->D0FIFOCTR = RUSB2_CFIFOCTR_BCLR_Msk; } rusb->D0FIFOSEL = 0; while (rusb->D0FIFOSEL_b.CURPIPE) {} /* if CURPIPE bits changes, check written value */ pipe->remaining = rem - len; if ((len < mps) || (rem == len)) { pipe->buf = NULL; return NULL != buf; } return false; } static void process_setup_packet(uint8_t rhport) { rusb2_reg_t* rusb = RUSB2_REG(rhport); if (0 == (rusb->INTSTS0 & RUSB2_INTSTS0_VALID_Msk)) return; rusb->CFIFOCTR = RUSB2_CFIFOCTR_BCLR_Msk; uint16_t setup_packet[4] = { tu_htole16(rusb->USBREQ), tu_htole16(rusb->USBVAL), tu_htole16(rusb->USBINDX), tu_htole16(rusb->USBLENG) }; rusb->INTSTS0 = ~((uint16_t) RUSB2_INTSTS0_VALID_Msk); dcd_event_setup_received(rhport, (const uint8_t*)&setup_packet[0], true); } static void process_status_completion(uint8_t rhport) { rusb2_reg_t* rusb = RUSB2_REG(rhport); uint8_t ep_addr; /* Check the data stage direction */ if (rusb->CFIFOSEL & RUSB2_CFIFOSEL_ISEL_WRITE) { /* IN transfer. */ ep_addr = tu_edpt_addr(0, TUSB_DIR_IN); } else { /* OUT transfer. */ ep_addr = tu_edpt_addr(0, TUSB_DIR_OUT); } dcd_event_xfer_complete(rhport, ep_addr, 0, XFER_RESULT_SUCCESS, true); } static bool process_pipe0_xfer(rusb2_reg_t* rusb, int buffer_type, uint8_t ep_addr, void* buffer, uint16_t total_bytes) { /* configure fifo direction and access unit settings */ if ( ep_addr ) { /* IN, 2 bytes */ rusb->CFIFOSEL = RUSB2_CFIFOSEL_ISEL_WRITE | RUSB2_FIFOSEL_MBW_16BIT | (TU_BYTE_ORDER == TU_BIG_ENDIAN ? RUSB2_FIFOSEL_BIGEND : 0); while ( !(rusb->CFIFOSEL & RUSB2_CFIFOSEL_ISEL_WRITE) ) {} } else { /* OUT, a byte */ rusb->CFIFOSEL = RUSB2_FIFOSEL_MBW_8BIT; while ( rusb->CFIFOSEL & RUSB2_CFIFOSEL_ISEL_WRITE ) {} } pipe_state_t *pipe = &_dcd.pipe[0]; pipe->ff = buffer_type; pipe->length = total_bytes; pipe->remaining = total_bytes; if ( total_bytes ) { pipe->buf = buffer; if ( ep_addr ) { /* IN */ TU_ASSERT(rusb->DCPCTR_b.BSTS && (rusb->USBREQ & 0x80)); pipe0_xfer_in(rusb); } rusb->DCPCTR = RUSB2_PIPE_CTR_PID_BUF; } else { /* ZLP */ pipe->buf = NULL; rusb->DCPCTR = RUSB2_DCPCTR_CCPL_Msk | RUSB2_PIPE_CTR_PID_BUF; } return true; } static bool process_pipe_xfer(rusb2_reg_t* rusb, int buffer_type, uint8_t ep_addr, void* buffer, uint16_t total_bytes) { const unsigned epn = tu_edpt_number(ep_addr); const unsigned dir = tu_edpt_dir(ep_addr); const unsigned num = _dcd.ep[dir][epn]; TU_ASSERT(num); pipe_state_t *pipe = &_dcd.pipe[num]; pipe->ff = buffer_type; pipe->buf = buffer; pipe->length = total_bytes; pipe->remaining = total_bytes; if (dir) { /* IN */ if (total_bytes) { pipe_xfer_in(rusb, num); } else { /* ZLP */ rusb->D0FIFOSEL = num; pipe_wait_for_ready(rusb, num); rusb->D0FIFOCTR = RUSB2_CFIFOCTR_BVAL_Msk; rusb->D0FIFOSEL = 0; /* if CURPIPE bits changes, check written value */ while (rusb->D0FIFOSEL_b.CURPIPE) {} } } else { // OUT volatile reg_pipetre_t *pt = get_pipetre(rusb, num); if (pt) { const uint16_t mps = edpt_max_packet_size(rusb, num); volatile uint16_t *ctr = get_pipectr(rusb, num); if (*ctr & 0x3) *ctr = RUSB2_PIPE_CTR_PID_NAK; pt->TRE = TU_BIT(8); pt->TRN = (total_bytes + mps - 1) / mps; pt->TRENB = 1; *ctr = RUSB2_PIPE_CTR_PID_BUF; } } // TU_LOG2("X %x %d %d\r\n", ep_addr, total_bytes, buffer_type); return true; } static bool process_edpt_xfer(rusb2_reg_t* rusb, int buffer_type, uint8_t ep_addr, void* buffer, uint16_t total_bytes) { const unsigned epn = tu_edpt_number(ep_addr); if (0 == epn) { return process_pipe0_xfer(rusb, buffer_type, ep_addr, buffer, total_bytes); } else { return process_pipe_xfer(rusb, buffer_type, ep_addr, buffer, total_bytes); } } static void process_pipe0_bemp(uint8_t rhport) { rusb2_reg_t* rusb = RUSB2_REG(rhport); bool completed = pipe0_xfer_in(rusb); if (completed) { pipe_state_t *pipe = &_dcd.pipe[0]; dcd_event_xfer_complete(rhport, tu_edpt_addr(0, TUSB_DIR_IN), pipe->length, XFER_RESULT_SUCCESS, true); } } static void process_pipe_brdy(uint8_t rhport, unsigned num) { rusb2_reg_t* rusb = RUSB2_REG(rhport); pipe_state_t *pipe = &_dcd.pipe[num]; const unsigned dir = tu_edpt_dir(pipe->ep); bool completed; if (dir) { /* IN */ completed = pipe_xfer_in(rusb, num); } else { // OUT if (num) { completed = pipe_xfer_out(rusb, num); } else { completed = pipe0_xfer_out(rusb); } } if (completed) { dcd_event_xfer_complete(rhport, pipe->ep, pipe->length - pipe->remaining, XFER_RESULT_SUCCESS, true); // TU_LOG1("C %d %d\r\n", num, pipe->length - pipe->remaining); } } static void process_bus_reset(uint8_t rhport) { rusb2_reg_t* rusb = RUSB2_REG(rhport); rusb->BEMPENB = 1; rusb->BRDYENB = 1; rusb->CFIFOCTR = RUSB2_CFIFOCTR_BCLR_Msk; rusb->D0FIFOSEL = 0; while (rusb->D0FIFOSEL_b.CURPIPE) {} /* if CURPIPE bits changes, check written value */ rusb->D1FIFOSEL = 0; while (rusb->D1FIFOSEL_b.CURPIPE) {} /* if CURPIPE bits changes, check written value */ volatile uint16_t *ctr = (volatile uint16_t*)((uintptr_t) (&rusb->PIPE_CTR[0])); volatile uint16_t *tre = (volatile uint16_t*)((uintptr_t) (&rusb->PIPE_TR[0].E)); for (int i = 1; i <= 5; ++i) { rusb->PIPESEL = i; rusb->PIPECFG = 0; *ctr = RUSB2_PIPE_CTR_ACLRM_Msk; *ctr = 0; ++ctr; *tre = TU_BIT(8); tre += 2; } for (int i = 6; i <= 9; ++i) { rusb->PIPESEL = i; rusb->PIPECFG = 0; *ctr = RUSB2_PIPE_CTR_ACLRM_Msk; *ctr = 0; ++ctr; } tu_varclr(&_dcd); TU_LOG3("Bus reset, RHST = %u\r\n", rusb->DVSTCTR0_b.RHST); tusb_speed_t speed; switch(rusb->DVSTCTR0 & RUSB2_DVSTCTR0_RHST_Msk) { case RUSB2_DVSTCTR0_RHST_LS: speed = TUSB_SPEED_LOW; break; case RUSB2_DVSTCTR0_RHST_FS: speed = TUSB_SPEED_FULL; break; case RUSB2_DVSTCTR0_RHST_HS: speed = TUSB_SPEED_HIGH; break; default: TU_ASSERT(false, ); } dcd_event_bus_reset(rhport, speed, true); } static void process_set_address(uint8_t rhport) { rusb2_reg_t* rusb = RUSB2_REG(rhport); const uint32_t addr = rusb->USBADDR & 0xFF; if (!addr) return; const tusb_control_request_t setup_packet = { #if defined(__CCRX__) .bmRequestType = { 0 }, /* Note: CCRX needs the braces over this struct member */ #else .bmRequestType = 0, #endif .bRequest = TUSB_REQ_SET_ADDRESS, .wValue = addr, .wIndex = 0, .wLength = 0, }; dcd_event_setup_received(rhport, (const uint8_t *) &setup_packet, true); } /*------------------------------------------------------------------*/ /* Device API *------------------------------------------------------------------*/ #if 0 // previously present in the rx driver before generalization static uint32_t disable_interrupt(void) { uint32_t pswi; #if defined(__CCRX__) pswi = get_psw() & 0x010000; clrpsw_i(); #else pswi = __builtin_rx_mvfc(0) & 0x010000; __builtin_rx_clrpsw('I'); #endif return pswi; } static void enable_interrupt(uint32_t pswi) { #if defined(__CCRX__) set_psw(get_psw() | pswi); #else __builtin_rx_mvtc(0, __builtin_rx_mvfc(0) | pswi); #endif } #endif void dcd_init(uint8_t rhport) { rusb2_reg_t* rusb = RUSB2_REG(rhport); rusb2_module_start(rhport, true); #ifdef RUSB2_SUPPORT_HIGHSPEED if ( rusb2_is_highspeed_rhport(rhport) ) { rusb->SYSCFG_b.HSE = 1; // leave CLKSEL as default (0x11) 24Mhz // Power and reset UTMI Phy uint16_t physet = (rusb->PHYSET | RUSB2_PHYSET_PLLRESET_Msk) & ~RUSB2_PHYSET_DIRPD_Msk; rusb->PHYSET = physet; R_BSP_SoftwareDelay((uint32_t) 1, BSP_DELAY_UNITS_MILLISECONDS); rusb->PHYSET_b.PLLRESET = 0; // set UTMI to operating mode and wait for PLL lock confirmation rusb->LPSTS_b.SUSPENDM = 1; while (!rusb->PLLSTA_b.PLLLOCK) {} rusb->SYSCFG_b.DRPD = 0; rusb->SYSCFG_b.USBE = 1; // Set CPU bus wait time (fine tunne later) // rusb2->BUSWAIT |= 0x0F00U; rusb->PHYSET_b.REPSEL = 1; } else #endif { rusb->SYSCFG_b.SCKE = 1; while (!rusb->SYSCFG_b.SCKE) {} rusb->SYSCFG_b.DRPD = 0; rusb->SYSCFG_b.DCFM = 0; rusb->SYSCFG_b.USBE = 1; // MCU specific PHY init rusb2_phy_init(); rusb->PHYSLEW = 0x5; rusb->DPUSR0R_FS_b.FIXPHY0 = 0u; /* USB_BASE Transceiver Output fixed */ // rusb2->USBMC = (uint16_t) (rusb2->USBMC | RUSB2_USBMC_VDCEN_Msk); } /* Setup default control pipe */ rusb->DCPMAXP_b.MXPS = 64; rusb->INTSTS0 = 0; rusb->INTENB0 = RUSB2_INTSTS0_VBINT_Msk | RUSB2_INTSTS0_BRDY_Msk | RUSB2_INTSTS0_BEMP_Msk | RUSB2_INTSTS0_DVST_Msk | RUSB2_INTSTS0_CTRT_Msk | (USE_SOF ? RUSB2_INTSTS0_SOFR_Msk : 0) | RUSB2_INTSTS0_RESM_Msk; rusb->BEMPENB = 1; rusb->BRDYENB = 1; if (rusb->INTSTS0_b.VBSTS) { dcd_connect(rhport); } } void dcd_int_enable(uint8_t rhport) { rusb2_int_enable(rhport); } void dcd_int_disable(uint8_t rhport) { rusb2_int_disable(rhport); } void dcd_set_address(uint8_t rhport, uint8_t dev_addr) { (void)rhport; (void)dev_addr; } void dcd_remote_wakeup(uint8_t rhport) { rusb2_reg_t* rusb = RUSB2_REG(rhport); rusb->DVSTCTR0_b.WKUP = 1; } void dcd_connect(uint8_t rhport) { rusb2_reg_t* rusb = RUSB2_REG(rhport); if ( rusb2_is_highspeed_rhport(rhport)) { rusb->SYSCFG_b.CNEN = 1; } rusb->SYSCFG_b.DPRPU = 1; } void dcd_disconnect(uint8_t rhport) { rusb2_reg_t* rusb = RUSB2_REG(rhport); rusb->SYSCFG_b.DPRPU = 0; } void dcd_sof_enable(uint8_t rhport, bool en) { (void) rhport; (void) en; // TODO implement later } //--------------------------------------------------------------------+ // Endpoint API //--------------------------------------------------------------------+ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * ep_desc) { (void)rhport; rusb2_reg_t * rusb = RUSB2_REG(rhport); const unsigned ep_addr = ep_desc->bEndpointAddress; const unsigned epn = tu_edpt_number(ep_addr); const unsigned dir = tu_edpt_dir(ep_addr); const unsigned xfer = ep_desc->bmAttributes.xfer; const unsigned mps = tu_edpt_packet_size(ep_desc); if (xfer == TUSB_XFER_ISOCHRONOUS) { // Fullspeed ISO is limit to 256 bytes if ( !rusb2_is_highspeed_rhport(rhport) && mps > 256) { return false; } } const unsigned num = find_pipe(xfer); TU_ASSERT(num); _dcd.pipe[num].ep = ep_addr; _dcd.ep[dir][epn] = num; /* setup pipe */ dcd_int_disable(rhport); if ( rusb2_is_highspeed_rhport(rhport) ) { // FIXME shouldn't be after pipe selection and config, also the BUFNMB should be changed // depending on the allocation scheme rusb->PIPEBUF = 0x7C08; } rusb->PIPESEL = num; rusb->PIPEMAXP = mps; volatile uint16_t *ctr = get_pipectr(rusb, num); *ctr = RUSB2_PIPE_CTR_ACLRM_Msk | RUSB2_PIPE_CTR_SQCLR_Msk; *ctr = 0; unsigned cfg = (dir << 4) | epn; if (xfer == TUSB_XFER_BULK) { cfg |= (RUSB2_PIPECFG_TYPE_BULK | RUSB2_PIPECFG_SHTNAK_Msk | RUSB2_PIPECFG_DBLB_Msk); } else if (xfer == TUSB_XFER_INTERRUPT) { cfg |= RUSB2_PIPECFG_TYPE_INT; } else { cfg |= (RUSB2_PIPECFG_TYPE_ISO | RUSB2_PIPECFG_DBLB_Msk); } rusb->PIPECFG = cfg; rusb->BRDYSTS = 0x1FFu ^ TU_BIT(num); rusb->BRDYENB |= TU_BIT(num); if (dir || (xfer != TUSB_XFER_BULK)) { *ctr = RUSB2_PIPE_CTR_PID_BUF; } // TU_LOG1("O %d %x %x\r\n", rusb->PIPESEL, rusb->PIPECFG, rusb->PIPEMAXP); dcd_int_enable(rhport); return true; } void dcd_edpt_close_all(uint8_t rhport) { unsigned i = TU_ARRAY_SIZE(_dcd.pipe); dcd_int_disable(rhport); while (--i) { /* Close all pipes except 0 */ const unsigned ep_addr = _dcd.pipe[i].ep; if (!ep_addr) continue; dcd_edpt_close(rhport, ep_addr); } dcd_int_enable(rhport); } void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr) { rusb2_reg_t * rusb = RUSB2_REG(rhport); const unsigned epn = tu_edpt_number(ep_addr); const unsigned dir = tu_edpt_dir(ep_addr); const unsigned num = _dcd.ep[dir][epn]; rusb->BRDYENB &= ~TU_BIT(num); volatile uint16_t *ctr = get_pipectr(rusb, num); *ctr = 0; rusb->PIPESEL = num; rusb->PIPECFG = 0; _dcd.pipe[num].ep = 0; _dcd.ep[dir][epn] = 0; } bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) { rusb2_reg_t* rusb = RUSB2_REG(rhport); dcd_int_disable(rhport); bool r = process_edpt_xfer(rusb, 0, ep_addr, buffer, total_bytes); dcd_int_enable(rhport); return r; } bool dcd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes) { // USB buffers always work in bytes so to avoid unnecessary divisions we demand item_size = 1 TU_ASSERT(ff->item_size == 1); rusb2_reg_t* rusb = RUSB2_REG(rhport); dcd_int_disable(rhport); bool r = process_edpt_xfer(rusb, 1, ep_addr, ff, total_bytes); dcd_int_enable(rhport); return r; } void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) { volatile uint16_t *ctr = ep_addr_to_pipectr(rhport, ep_addr); if (!ctr) return; dcd_int_disable(rhport); const uint32_t pid = *ctr & 0x3; *ctr = pid | RUSB2_PIPE_CTR_PID_STALL; *ctr = RUSB2_PIPE_CTR_PID_STALL; dcd_int_enable(rhport); } void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) { rusb2_reg_t * rusb = RUSB2_REG(rhport); volatile uint16_t *ctr = ep_addr_to_pipectr(rhport, ep_addr); if (!ctr) return; dcd_int_disable(rhport); *ctr = RUSB2_PIPE_CTR_SQCLR_Msk; if (tu_edpt_dir(ep_addr)) { /* IN */ *ctr = RUSB2_PIPE_CTR_PID_BUF; } else { const unsigned num = _dcd.ep[0][tu_edpt_number(ep_addr)]; rusb->PIPESEL = num; if (rusb->PIPECFG_b.TYPE != 1) { *ctr = RUSB2_PIPE_CTR_PID_BUF; } } dcd_int_enable(rhport); } //--------------------------------------------------------------------+ // ISR //--------------------------------------------------------------------+ void dcd_int_handler(uint8_t rhport) { rusb2_reg_t* rusb = RUSB2_REG(rhport); uint16_t is0 = rusb->INTSTS0; /* clear active bits except VALID (don't write 0 to already cleared bits according to the HW manual) */ rusb->INTSTS0 = ~((RUSB2_INTSTS0_CTRT_Msk | RUSB2_INTSTS0_DVST_Msk | RUSB2_INTSTS0_SOFR_Msk | RUSB2_INTSTS0_RESM_Msk | RUSB2_INTSTS0_VBINT_Msk) & is0) | RUSB2_INTSTS0_VALID_Msk; // VBUS changes if ( is0 & RUSB2_INTSTS0_VBINT_Msk ) { if ( rusb->INTSTS0_b.VBSTS ) { dcd_connect(rhport); } else { dcd_disconnect(rhport); } } // Resumed if ( is0 & RUSB2_INTSTS0_RESM_Msk ) { dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true); #if (0 == USE_SOF) rusb->INTENB0_b.SOFE = 0; #endif } // SOF received if ( (is0 & RUSB2_INTSTS0_SOFR_Msk) && rusb->INTENB0_b.SOFE ) { // USBD will exit suspended mode when SOF event is received dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true); #if (0 == USE_SOF) rusb->INTENB0_b.SOFE = 0; #endif } // Device state changes if ( is0 & RUSB2_INTSTS0_DVST_Msk ) { switch (is0 & RUSB2_INTSTS0_DVSQ_Msk) { case RUSB2_INTSTS0_DVSQ_STATE_DEF: process_bus_reset(rhport); break; case RUSB2_INTSTS0_DVSQ_STATE_ADDR: process_set_address(rhport); break; case RUSB2_INTSTS0_DVSQ_STATE_SUSP0: case RUSB2_INTSTS0_DVSQ_STATE_SUSP1: case RUSB2_INTSTS0_DVSQ_STATE_SUSP2: case RUSB2_INTSTS0_DVSQ_STATE_SUSP3: dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true); #if (0 == USE_SOF) rusb->INTENB0_b.SOFE = 1; #endif default: break; } } // if ( is0 & RUSB2_INTSTS0_NRDY_Msk ) { // rusb->NRDYSTS = 0; // } // Control transfer stage changes if ( is0 & RUSB2_INTSTS0_CTRT_Msk ) { if ( is0 & RUSB2_INTSTS0_CTSQ_CTRL_RDATA ) { /* A setup packet has been received. */ process_setup_packet(rhport); } else if ( 0 == (is0 & RUSB2_INTSTS0_CTSQ_Msk) ) { /* A ZLP has been sent/received. */ process_status_completion(rhport); } } // Buffer empty if ( is0 & RUSB2_INTSTS0_BEMP_Msk ) { const uint16_t s = rusb->BEMPSTS; rusb->BEMPSTS = 0; if ( s & 1 ) { process_pipe0_bemp(rhport); } } // Buffer ready if ( is0 & RUSB2_INTSTS0_BRDY_Msk ) { const unsigned m = rusb->BRDYENB; unsigned s = rusb->BRDYSTS & m; /* clear active bits (don't write 0 to already cleared bits according to the HW manual) */ rusb->BRDYSTS = ~s; while (s) { #if defined(__CCRX__) static const int Mod37BitPosition[] = { -1, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13, 4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9, 5, 20, 8, 19, 18 }; const unsigned num = Mod37BitPosition[(-s & s) % 37]; #else const unsigned num = __builtin_ctz(s); #endif process_pipe_brdy(rhport, num); s &= ~TU_BIT(num); } } } #endif