/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if (CFG_TUD_ENABLED && CFG_TUD_MSC) #include "device/dcd.h" // for faking dcd_event_xfer_complete #include "device/usbd.h" #include "device/usbd_pvt.h" #include "msc_device.h" // Level where CFG_TUSB_DEBUG must be at least for this driver is logged #ifndef CFG_TUD_MSC_LOG_LEVEL #define CFG_TUD_MSC_LOG_LEVEL CFG_TUD_LOG_LEVEL #endif #define TU_LOG_DRV(...) TU_LOG(CFG_TUD_MSC_LOG_LEVEL, __VA_ARGS__) //--------------------------------------------------------------------+ // Weak stubs: invoked if no strong implementation is available //--------------------------------------------------------------------+ TU_ATTR_WEAK void tud_msc_inquiry_cb(uint8_t lun, uint8_t vendor_id[8], uint8_t product_id[16], uint8_t product_rev[4]) { (void) lun; (void) vendor_id; (void) product_id; (void) product_rev; } TU_ATTR_WEAK uint32_t tud_msc_inquiry2_cb(uint8_t lun, scsi_inquiry_resp_t* inquiry_resp) { (void) lun; (void) inquiry_resp; return 0; } //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ enum { MSC_STAGE_CMD = 0, MSC_STAGE_DATA, MSC_STAGE_STATUS, MSC_STAGE_STATUS_SENT, MSC_STAGE_NEED_RESET, }; typedef struct { TU_ATTR_ALIGNED(4) msc_cbw_t cbw; // 31 bytes uint8_t rhport; TU_ATTR_ALIGNED(4) msc_csw_t csw; // 13 bytes uint8_t itf_num; uint8_t ep_in; uint8_t ep_out; uint32_t total_len; // byte to be transferred, can be smaller than total_bytes in cbw uint32_t xferred_len; // numbered of bytes transferred so far in the Data Stage // Bulk Only Transfer (BOT) Protocol uint8_t stage; // SCSI Sense Response Data uint8_t sense_key; uint8_t add_sense_code; uint8_t add_sense_qualifier; uint8_t pending_io; // pending async IO }mscd_interface_t; static mscd_interface_t _mscd_itf; CFG_TUD_MEM_SECTION static struct { TUD_EPBUF_DEF(buf, CFG_TUD_MSC_EP_BUFSIZE); } _mscd_epbuf; //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_t* buffer, uint32_t bufsize); static void proc_read10_cmd(mscd_interface_t* p_msc); static void proc_read_io_data(mscd_interface_t* p_msc, int32_t nbytes); static void proc_write10_cmd(mscd_interface_t* p_msc); static void proc_write10_host_data(mscd_interface_t* p_msc, uint32_t xferred_bytes); static void proc_write_io_data(mscd_interface_t* p_msc, uint32_t xferred_bytes, int32_t nbytes); static bool proc_stage_status(mscd_interface_t* p_msc); TU_ATTR_ALWAYS_INLINE static inline bool is_data_in(uint8_t dir) { return tu_bit_test(dir, 7); } static inline bool send_csw(mscd_interface_t* p_msc) { // Data residue is always = host expect - actual transferred uint8_t rhport = p_msc->rhport; p_msc->csw.data_residue = p_msc->cbw.total_bytes - p_msc->xferred_len; p_msc->stage = MSC_STAGE_STATUS_SENT; memcpy(_mscd_epbuf.buf, &p_msc->csw, sizeof(msc_csw_t)); return usbd_edpt_xfer(rhport, p_msc->ep_in , _mscd_epbuf.buf, sizeof(msc_csw_t)); } static inline bool prepare_cbw(mscd_interface_t* p_msc) { uint8_t rhport = p_msc->rhport; p_msc->stage = MSC_STAGE_CMD; return usbd_edpt_xfer(rhport, p_msc->ep_out, _mscd_epbuf.buf, sizeof(msc_cbw_t)); } static void fail_scsi_op(mscd_interface_t* p_msc, uint8_t status) { msc_cbw_t const * p_cbw = &p_msc->cbw; msc_csw_t * p_csw = &p_msc->csw; uint8_t rhport = p_msc->rhport; p_csw->status = status; p_csw->data_residue = p_msc->cbw.total_bytes - p_msc->xferred_len; p_msc->stage = MSC_STAGE_STATUS; // failed but sense key is not set: default to Illegal Request if (p_msc->sense_key == 0) { tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00); } // If there is data stage and not yet complete, stall it if (p_cbw->total_bytes && p_csw->data_residue) { if (is_data_in(p_cbw->dir)) { usbd_edpt_stall(rhport, p_msc->ep_in); } else { usbd_edpt_stall(rhport, p_msc->ep_out); } } } static inline uint32_t rdwr10_get_lba(uint8_t const command[]) { // use offsetof to avoid pointer to the odd/unaligned address const uint32_t lba = tu_unaligned_read32(command + offsetof(scsi_write10_t, lba)); return tu_ntohl(lba); // lba is in Big Endian } static inline uint16_t rdwr10_get_blockcount(msc_cbw_t const* cbw) { uint16_t const block_count = tu_unaligned_read16(cbw->command + offsetof(scsi_write10_t, block_count)); return tu_ntohs(block_count); } static inline uint16_t rdwr10_get_blocksize(msc_cbw_t const* cbw) { // first extract block count in the command uint16_t const block_count = rdwr10_get_blockcount(cbw); if (block_count == 0) { return 0; // invalid block count } return (uint16_t) (cbw->total_bytes / block_count); } static uint8_t rdwr10_validate_cmd(msc_cbw_t const* cbw) { uint8_t status = MSC_CSW_STATUS_PASSED; uint16_t const block_count = rdwr10_get_blockcount(cbw); if (cbw->total_bytes == 0) { if (block_count) { TU_LOG_DRV(" SCSI case 2 (Hn < Di) or case 3 (Hn < Do) \r\n"); status = MSC_CSW_STATUS_PHASE_ERROR; } else { // no data transfer, only exist in complaint test suite } } else { if (SCSI_CMD_READ_10 == cbw->command[0] && !is_data_in(cbw->dir)) { TU_LOG_DRV(" SCSI case 10 (Ho <> Di)\r\n"); status = MSC_CSW_STATUS_PHASE_ERROR; } else if (SCSI_CMD_WRITE_10 == cbw->command[0] && is_data_in(cbw->dir)) { TU_LOG_DRV(" SCSI case 8 (Hi <> Do)\r\n"); status = MSC_CSW_STATUS_PHASE_ERROR; } else if (0 == block_count) { TU_LOG_DRV(" SCSI case 4 Hi > Dn (READ10) or case 9 Ho > Dn (WRITE10) \r\n"); status = MSC_CSW_STATUS_FAILED; } else if (cbw->total_bytes / block_count == 0) { TU_LOG_DRV(" Computed block size = 0. SCSI case 7 Hi < Di (READ10) or case 13 Ho < Do (WRIT10)\r\n"); status = MSC_CSW_STATUS_PHASE_ERROR; } } return status; } static bool proc_stage_status(mscd_interface_t *p_msc) { uint8_t rhport = p_msc->rhport; msc_cbw_t const *p_cbw = &p_msc->cbw; // skip status if epin is currently stalled, will do it when received Clear Stall request if (!usbd_edpt_stalled(rhport, p_msc->ep_in)) { if ((p_cbw->total_bytes > p_msc->xferred_len) && is_data_in(p_cbw->dir)) { // 6.7 The 13 Cases: case 5 (Hi > Di): STALL before status // TU_LOG_DRV(" SCSI case 5 (Hi > Di): %lu > %lu\r\n", p_cbw->total_bytes, p_msc->xferred_len); usbd_edpt_stall(rhport, p_msc->ep_in); } else { TU_ASSERT(send_csw(p_msc)); } } #if TU_CHECK_MCU(OPT_MCU_CXD56) // WORKAROUND: cxd56 has its own nuttx usb stack which does not forward Set/ClearFeature(Endpoint) to DCD. // There is no way for us to know when EP is un-stall, therefore we will unconditionally un-stall here and // hope everything will work if (usbd_edpt_stalled(rhport, p_msc->ep_in)) { usbd_edpt_clear_stall(rhport, p_msc->ep_in); send_csw(p_msc); } #endif return true; } //--------------------------------------------------------------------+ // Debug //--------------------------------------------------------------------+ #if CFG_TUSB_DEBUG >= CFG_TUD_MSC_LOG_LEVEL TU_ATTR_UNUSED tu_static tu_lookup_entry_t const _msc_scsi_cmd_lookup[] = { { .key = SCSI_CMD_TEST_UNIT_READY , .data = "Test Unit Ready" }, { .key = SCSI_CMD_INQUIRY , .data = "Inquiry" }, { .key = SCSI_CMD_MODE_SELECT_6 , .data = "Mode_Select 6" }, { .key = SCSI_CMD_MODE_SENSE_6 , .data = "Mode_Sense 6" }, { .key = SCSI_CMD_START_STOP_UNIT , .data = "Start Stop Unit" }, { .key = SCSI_CMD_PREVENT_ALLOW_MEDIUM_REMOVAL , .data = "Prevent/Allow Medium Removal" }, { .key = SCSI_CMD_READ_CAPACITY_10 , .data = "Read Capacity10" }, { .key = SCSI_CMD_REQUEST_SENSE , .data = "Request Sense" }, { .key = SCSI_CMD_READ_FORMAT_CAPACITY , .data = "Read Format Capacity" }, { .key = SCSI_CMD_READ_10 , .data = "Read10" }, { .key = SCSI_CMD_WRITE_10 , .data = "Write10" } }; TU_ATTR_UNUSED tu_static tu_lookup_table_t const _msc_scsi_cmd_table = { .count = TU_ARRAY_SIZE(_msc_scsi_cmd_lookup), .items = _msc_scsi_cmd_lookup }; #endif //--------------------------------------------------------------------+ // APPLICATION API //--------------------------------------------------------------------+ bool tud_msc_set_sense(uint8_t lun, uint8_t sense_key, uint8_t add_sense_code, uint8_t add_sense_qualifier) { (void) lun; _mscd_itf.sense_key = sense_key; _mscd_itf.add_sense_code = add_sense_code; _mscd_itf.add_sense_qualifier = add_sense_qualifier; return true; } TU_ATTR_ALWAYS_INLINE static inline void set_sense_medium_not_present(uint8_t lun) { // default sense is NOT READY, MEDIUM NOT PRESENT tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x3A, 0x00); } static void proc_async_io_done(void *bytes_io) { mscd_interface_t *p_msc = &_mscd_itf; TU_VERIFY(p_msc->pending_io, ); const int32_t nbytes = (int32_t) (intptr_t) bytes_io; const uint8_t cmd = p_msc->cbw.command[0]; p_msc->pending_io = 0; switch (cmd) { case SCSI_CMD_READ_10: proc_read_io_data(p_msc, nbytes); break; case SCSI_CMD_WRITE_10: proc_write_io_data(p_msc, (uint32_t) nbytes, nbytes); break; default: break; } // send status if stage is transitioned to STATUS if (p_msc->stage == MSC_STAGE_STATUS) { proc_stage_status(p_msc); } } bool tud_msc_async_io_done(int32_t bytes_io, bool in_isr) { // Precheck to avoid queueing multiple RW done callback TU_VERIFY(_mscd_itf.pending_io); if (bytes_io == 0) { bytes_io = TUD_MSC_RET_ERROR; // 0 is treated as error, no reason to call this with BUSY here } usbd_defer_func(proc_async_io_done, (void *) (intptr_t) bytes_io, in_isr); return true; } //--------------------------------------------------------------------+ // USBD Driver API //--------------------------------------------------------------------+ void mscd_init(void) { TU_LOG_INT(CFG_TUD_MSC_LOG_LEVEL, sizeof(mscd_interface_t)); tu_memclr(&_mscd_itf, sizeof(mscd_interface_t)); } bool mscd_deinit(void) { return true; // nothing to do } void mscd_reset(uint8_t rhport) { (void) rhport; tu_memclr(&_mscd_itf, sizeof(mscd_interface_t)); } uint16_t mscd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len) { // only support SCSI's BOT protocol TU_VERIFY(TUSB_CLASS_MSC == itf_desc->bInterfaceClass && MSC_SUBCLASS_SCSI == itf_desc->bInterfaceSubClass && MSC_PROTOCOL_BOT == itf_desc->bInterfaceProtocol, 0); uint16_t const drv_len = sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t); TU_ASSERT(max_len >= drv_len, 0); // Max length must be at least 1 interface + 2 endpoints mscd_interface_t * p_msc = &_mscd_itf; p_msc->itf_num = itf_desc->bInterfaceNumber; p_msc->rhport = rhport; // Open endpoint pair TU_ASSERT(usbd_open_edpt_pair(rhport, tu_desc_next(itf_desc), 2, TUSB_XFER_BULK, &p_msc->ep_out, &p_msc->ep_in), 0); // Prepare for Command Block Wrapper TU_ASSERT(prepare_cbw(p_msc), drv_len); return drv_len; } static void proc_bot_reset(mscd_interface_t* p_msc) { p_msc->stage = MSC_STAGE_CMD; p_msc->total_len = 0; p_msc->xferred_len = 0; p_msc->sense_key = 0; p_msc->add_sense_code = 0; p_msc->add_sense_qualifier = 0; } // Invoked when a control transfer occurred on an interface of this class // Driver response accordingly to the request and the transfer stage (setup/data/ack) // return false to stall control endpoint (e.g unsupported request) bool mscd_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t const * request) { if (stage != CONTROL_STAGE_SETUP) { return true; // nothing to do with DATA & ACK stage } mscd_interface_t* p_msc = &_mscd_itf; // Clear Endpoint Feature (stall) for recovery if ( TUSB_REQ_TYPE_STANDARD == request->bmRequestType_bit.type && TUSB_REQ_RCPT_ENDPOINT == request->bmRequestType_bit.recipient && TUSB_REQ_CLEAR_FEATURE == request->bRequest && TUSB_REQ_FEATURE_EDPT_HALT == request->wValue ) { uint8_t const ep_addr = tu_u16_low(request->wIndex); if (p_msc->stage == MSC_STAGE_NEED_RESET) { // reset recovery is required to recover from this stage // Clear Stall request cannot resolve this -> continue to stall endpoint usbd_edpt_stall(rhport, ep_addr); } else { if (ep_addr == p_msc->ep_in) { if (p_msc->stage == MSC_STAGE_STATUS) { // resume sending SCSI status if we are in this stage previously before stalled TU_ASSERT(send_csw(p_msc)); } } else if (ep_addr == p_msc->ep_out) { if (p_msc->stage == MSC_STAGE_CMD) { // part of reset recovery (probably due to invalid CBW) -> prepare for new command // Note: skip if already queued previously if (usbd_edpt_ready(rhport, p_msc->ep_out)) { TU_ASSERT(prepare_cbw(p_msc)); } } } } return true; } // From this point only handle class request only TU_VERIFY(request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS); switch ( request->bRequest ) { case MSC_REQ_RESET: TU_LOG_DRV(" MSC BOT Reset\r\n"); TU_VERIFY(request->wValue == 0 && request->wLength == 0); proc_bot_reset(p_msc); // driver state reset tud_control_status(rhport, request); break; case MSC_REQ_GET_MAX_LUN: { TU_LOG_DRV(" MSC Get Max Lun\r\n"); TU_VERIFY(request->wValue == 0 && request->wLength == 1); uint8_t maxlun = 1; if (tud_msc_get_maxlun_cb) { maxlun = tud_msc_get_maxlun_cb(); } TU_VERIFY(maxlun); maxlun--; // MAX LUN is minus 1 by specs tud_control_xfer(rhport, request, &maxlun, 1); break; } default: return false; // stall unsupported request } return true; } bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes) { (void) event; mscd_interface_t* p_msc = &_mscd_itf; msc_cbw_t * p_cbw = &p_msc->cbw; msc_csw_t * p_csw = &p_msc->csw; switch (p_msc->stage) { case MSC_STAGE_CMD: { //------------- new CBW received -------------// // Complete IN while waiting for CMD is usually Status of previous SCSI op, ignore it if (ep_addr != p_msc->ep_out) { return true; } const uint32_t signature = tu_le32toh(tu_unaligned_read32(_mscd_epbuf.buf)); if (!(xferred_bytes == sizeof(msc_cbw_t) && signature == MSC_CBW_SIGNATURE)) { // BOT 6.6.1 If CBW is not valid stall both endpoints until reset recovery TU_LOG_DRV(" SCSI CBW is not valid\r\n"); p_msc->stage = MSC_STAGE_NEED_RESET; usbd_edpt_stall(rhport, p_msc->ep_in); usbd_edpt_stall(rhport, p_msc->ep_out); return false; } memcpy(p_cbw, _mscd_epbuf.buf, sizeof(msc_cbw_t)); TU_LOG_DRV(" SCSI Command [Lun%u]: %s\r\n", p_cbw->lun, tu_lookup_find(&_msc_scsi_cmd_table, p_cbw->command[0])); // TU_LOG_MEM(CFG_TUD_MSC_LOG_LEVEL, p_cbw, xferred_bytes, 2); p_csw->signature = MSC_CSW_SIGNATURE; p_csw->tag = p_cbw->tag; p_csw->data_residue = 0; p_csw->status = MSC_CSW_STATUS_PASSED; /*------------- Parse command and prepare DATA -------------*/ p_msc->stage = MSC_STAGE_DATA; p_msc->total_len = p_cbw->total_bytes; p_msc->xferred_len = 0; // Read10 or Write10 if ((SCSI_CMD_READ_10 == p_cbw->command[0]) || (SCSI_CMD_WRITE_10 == p_cbw->command[0])) { uint8_t const status = rdwr10_validate_cmd(p_cbw); if (status != MSC_CSW_STATUS_PASSED) { fail_scsi_op(p_msc, status); } else if (p_cbw->total_bytes) { if (SCSI_CMD_READ_10 == p_cbw->command[0]) { proc_read10_cmd(p_msc); } else { proc_write10_cmd(p_msc); } } else { // no data transfer, only exist in complaint test suite p_msc->stage = MSC_STAGE_STATUS; } } else { // For other SCSI commands // 1. OUT : queue transfer (invoke app callback after done) // 2. IN & Zero: Process if is built-in, else Invoke app callback. Skip DATA if zero length if ((p_cbw->total_bytes > 0) && !is_data_in(p_cbw->dir)) { if (p_cbw->total_bytes > CFG_TUD_MSC_EP_BUFSIZE) { TU_LOG_DRV(" SCSI reject non READ10/WRITE10 with large data\r\n"); fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED); } else { // Didn't check for case 9 (Ho > Dn), which requires examining scsi command first // but it is OK to just receive data then responded with failed status TU_ASSERT(usbd_edpt_xfer(rhport, p_msc->ep_out, _mscd_epbuf.buf, (uint16_t) p_msc->total_len)); } } else { // First process if it is a built-in commands int32_t resplen = proc_builtin_scsi(p_cbw->lun, p_cbw->command, _mscd_epbuf.buf, CFG_TUD_MSC_EP_BUFSIZE); // Invoke user callback if not built-in if ((resplen < 0) && (p_msc->sense_key == 0)) { resplen = tud_msc_scsi_cb(p_cbw->lun, p_cbw->command, _mscd_epbuf.buf, (uint16_t)p_msc->total_len); } if (resplen < 0) { // unsupported command TU_LOG_DRV(" SCSI unsupported or failed command\r\n"); fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED); } else if (resplen == 0) { if (p_cbw->total_bytes) { // 6.7 The 13 Cases: case 4 (Hi > Dn) // TU_LOG_DRV(" SCSI case 4 (Hi > Dn): %lu\r\n", p_cbw->total_bytes); fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED); } else { // case 1 Hn = Dn: all good p_msc->stage = MSC_STAGE_STATUS; } } else { if (p_cbw->total_bytes == 0) { // 6.7 The 13 Cases: case 2 (Hn < Di) // TU_LOG_DRV(" SCSI case 2 (Hn < Di): %lu\r\n", p_cbw->total_bytes); fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED); } else { // cannot return more than host expect p_msc->total_len = tu_min32((uint32_t)resplen, p_cbw->total_bytes); TU_ASSERT(usbd_edpt_xfer(rhport, p_msc->ep_in, _mscd_epbuf.buf, (uint16_t) p_msc->total_len)); } } } } break; } case MSC_STAGE_DATA: TU_LOG_DRV(" SCSI Data [Lun%u]\r\n", p_cbw->lun); TU_ASSERT(xferred_bytes <= CFG_TUD_MSC_EP_BUFSIZE); // sanity check to avoid buffer overflow // TU_LOG_MEM(CFG_TUD_MSC_LOG_LEVEL, _mscd_epbuf.buf, xferred_bytes, 2); if (SCSI_CMD_READ_10 == p_cbw->command[0]) { p_msc->xferred_len += xferred_bytes; if ( p_msc->xferred_len >= p_msc->total_len ) { // Data Stage is complete p_msc->stage = MSC_STAGE_STATUS; }else { proc_read10_cmd(p_msc); } } else if (SCSI_CMD_WRITE_10 == p_cbw->command[0]) { proc_write10_host_data(p_msc, xferred_bytes); } else { p_msc->xferred_len += xferred_bytes; // OUT transfer, invoke callback if needed if ( !is_data_in(p_cbw->dir) ) { int32_t cb_result = tud_msc_scsi_cb(p_cbw->lun, p_cbw->command, _mscd_epbuf.buf, (uint16_t) p_msc->total_len); if ( cb_result < 0 ) { // unsupported command TU_LOG_DRV(" SCSI unsupported command\r\n"); fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED); }else { // TODO haven't implement this scenario any further yet } } if ( p_msc->xferred_len >= p_msc->total_len ) { // Data Stage is complete p_msc->stage = MSC_STAGE_STATUS; } else { // This scenario with command that take more than one transfer is already rejected at Command stage TU_BREAKPOINT(); } } break; case MSC_STAGE_STATUS: // processed immediately after this switch, supposedly to be empty break; case MSC_STAGE_STATUS_SENT: // Status phase is complete if ((ep_addr == p_msc->ep_in) && (xferred_bytes == sizeof(msc_csw_t))) { TU_LOG_DRV(" SCSI Status [Lun%u] = %u\r\n", p_cbw->lun, p_csw->status); // TU_LOG_MEM(CFG_TUD_MSC_LOG_LEVEL, p_csw, xferred_bytes, 2); // Invoke complete callback if defined // Note: There is racing issue with samd51 + qspi flash testing with arduino // if complete_cb() is invoked after queuing the status. switch (p_cbw->command[0]) { case SCSI_CMD_READ_10: if (tud_msc_read10_complete_cb) { tud_msc_read10_complete_cb(p_cbw->lun); } break; case SCSI_CMD_WRITE_10: if (tud_msc_write10_complete_cb) { tud_msc_write10_complete_cb(p_cbw->lun); } break; default: if (tud_msc_scsi_complete_cb) { tud_msc_scsi_complete_cb(p_cbw->lun, p_cbw->command); } break; } TU_ASSERT(prepare_cbw(p_msc)); } else { // Any xfer ended here is considered unknown error, ignore it TU_LOG1(" Warning expect SCSI Status but received unknown data\r\n"); } break; default: break; } if (p_msc->stage == MSC_STAGE_STATUS) { TU_ASSERT(proc_stage_status(p_msc)); } return true; } /*------------------------------------------------------------------*/ /* SCSI Command Process *------------------------------------------------------------------*/ // return response's length (copied to buffer). Negative if it is not an built-in command or indicate Failed status (CSW) // In case of a failed status, sense key must be set for reason of failure static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_t* buffer, uint32_t bufsize) { (void)bufsize; // TODO refractor later int32_t resplen; mscd_interface_t* p_msc = &_mscd_itf; switch (scsi_cmd[0]) { case SCSI_CMD_TEST_UNIT_READY: resplen = 0; if (!tud_msc_test_unit_ready_cb(lun)) { // Failed status response resplen = -1; // set default sense if not set by callback if (p_msc->sense_key == 0) { set_sense_medium_not_present(lun); } } break; case SCSI_CMD_START_STOP_UNIT: resplen = 0; if (tud_msc_start_stop_cb) { scsi_start_stop_unit_t const* start_stop = (scsi_start_stop_unit_t const*)scsi_cmd; if (!tud_msc_start_stop_cb(lun, start_stop->power_condition, start_stop->start, start_stop->load_eject)) { // Failed status response resplen = -1; // set default sense if not set by callback if (p_msc->sense_key == 0) { set_sense_medium_not_present(lun); } } } break; case SCSI_CMD_PREVENT_ALLOW_MEDIUM_REMOVAL: resplen = 0; if (tud_msc_prevent_allow_medium_removal_cb) { scsi_prevent_allow_medium_removal_t const* prevent_allow = (scsi_prevent_allow_medium_removal_t const*)scsi_cmd; if (!tud_msc_prevent_allow_medium_removal_cb(lun, prevent_allow->prohibit_removal, prevent_allow->control)) { // Failed status response resplen = -1; // set default sense if not set by callback if (p_msc->sense_key == 0) { set_sense_medium_not_present(lun); } } } break; case SCSI_CMD_READ_CAPACITY_10: { uint32_t block_count; uint32_t block_size; uint16_t block_size_u16; tud_msc_capacity_cb(lun, &block_count, &block_size_u16); block_size = (uint32_t)block_size_u16; // Invalid block size/count from callback, possibly unit is not ready // stall this request, set sense key to NOT READY if (block_count == 0 || block_size == 0) { resplen = -1; // set default sense if not set by callback if (p_msc->sense_key == 0) { set_sense_medium_not_present(lun); } } else { scsi_read_capacity10_resp_t read_capa10; read_capa10.last_lba = tu_htonl(block_count-1); read_capa10.block_size = tu_htonl(block_size); resplen = sizeof(read_capa10); TU_VERIFY(0 == tu_memcpy_s(buffer, bufsize, &read_capa10, (size_t) resplen)); } } break; case SCSI_CMD_READ_FORMAT_CAPACITY: { scsi_read_format_capacity_data_t read_fmt_capa = { .list_length = 8, .block_num = 0, .descriptor_type = 2, // formatted media .block_size_u16 = 0 }; uint32_t block_count; uint16_t block_size; tud_msc_capacity_cb(lun, &block_count, &block_size); // Invalid block size/count from callback, possibly unit is not ready // stall this request, set sense key to NOT READY if (block_count == 0 || block_size == 0) { resplen = -1; // set default sense if not set by callback if (p_msc->sense_key == 0) { set_sense_medium_not_present(lun); } } else { read_fmt_capa.block_num = tu_htonl(block_count); read_fmt_capa.block_size_u16 = tu_htons(block_size); resplen = sizeof(read_fmt_capa); TU_VERIFY(0 == tu_memcpy_s(buffer, bufsize, &read_fmt_capa, (size_t) resplen)); } } break; case SCSI_CMD_INQUIRY: { scsi_inquiry_resp_t *inquiry_rsp = (scsi_inquiry_resp_t *) buffer; tu_memclr(inquiry_rsp, sizeof(scsi_inquiry_resp_t)); inquiry_rsp->is_removable = 1; inquiry_rsp->version = 2; inquiry_rsp->response_data_format = 2; inquiry_rsp->additional_length = sizeof(scsi_inquiry_resp_t) - 5; resplen = (int32_t) tud_msc_inquiry2_cb(lun, inquiry_rsp); if (resplen == 0) { // stub callback with no response, use v1 callback tud_msc_inquiry_cb(lun, inquiry_rsp->vendor_id, inquiry_rsp->product_id, inquiry_rsp->product_rev); resplen = sizeof(scsi_inquiry_resp_t); } } break; case SCSI_CMD_MODE_SENSE_6: { scsi_mode_sense6_resp_t mode_resp = { .data_len = 3, .medium_type = 0, .write_protected = false, .reserved = 0, .block_descriptor_len = 0 // no block descriptor are included }; bool writable = true; if (tud_msc_is_writable_cb) { writable = tud_msc_is_writable_cb(lun); } mode_resp.write_protected = !writable; resplen = sizeof(mode_resp); TU_VERIFY(0 == tu_memcpy_s(buffer, bufsize, &mode_resp, (size_t) resplen)); } break; case SCSI_CMD_REQUEST_SENSE: { scsi_sense_fixed_resp_t sense_rsp = { .response_code = 0x70, // current, fixed format .valid = 1 }; sense_rsp.add_sense_len = sizeof(scsi_sense_fixed_resp_t) - 8; sense_rsp.sense_key = (uint8_t)(p_msc->sense_key & 0x0F); sense_rsp.add_sense_code = p_msc->add_sense_code; sense_rsp.add_sense_qualifier = p_msc->add_sense_qualifier; resplen = sizeof(sense_rsp); TU_VERIFY(0 == tu_memcpy_s(buffer, bufsize, &sense_rsp, (size_t) resplen)); // request sense callback could overwrite the sense data if (tud_msc_request_sense_cb) { resplen = tud_msc_request_sense_cb(lun, buffer, (uint16_t)bufsize); } // Clear sense data after copy tud_msc_set_sense(lun, 0, 0, 0); } break; default: resplen = -1; break; } return resplen; } static void proc_read10_cmd(mscd_interface_t* p_msc) { msc_cbw_t const* p_cbw = &p_msc->cbw; uint16_t const block_sz = rdwr10_get_blocksize(p_cbw); // already verified non-zero // Adjust lba & offset with transferred bytes uint32_t const lba = rdwr10_get_lba(p_cbw->command) + (p_msc->xferred_len / block_sz); uint32_t const offset = p_msc->xferred_len % block_sz; // remaining bytes capped at class buffer int32_t nbytes = (int32_t)tu_min32(CFG_TUD_MSC_EP_BUFSIZE, p_cbw->total_bytes - p_msc->xferred_len); p_msc->pending_io = 1; nbytes = tud_msc_read10_cb(p_cbw->lun, lba, offset, _mscd_epbuf.buf, (uint32_t)nbytes); if (nbytes != TUD_MSC_RET_ASYNC) { p_msc->pending_io = 0; proc_read_io_data(p_msc, nbytes); } } static void proc_read_io_data(mscd_interface_t* p_msc, int32_t nbytes) { const uint8_t rhport = p_msc->rhport; if (nbytes > 0) { TU_ASSERT(usbd_edpt_xfer(rhport, p_msc->ep_in, _mscd_epbuf.buf, (uint16_t) nbytes),); } else { // nbytes is status switch (nbytes) { case TUD_MSC_RET_ERROR: // error -> endpoint is stalled & status in CSW set to failed TU_LOG_DRV(" IO read() failed\r\n"); set_sense_medium_not_present(p_msc->cbw.lun); fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED); break; case TUD_MSC_RET_BUSY: // not ready yet -> fake a transfer complete so that this driver callback will fire again dcd_event_xfer_complete(rhport, p_msc->ep_in, 0, XFER_RESULT_SUCCESS, false); break; default: break; } } } static void proc_write10_cmd(mscd_interface_t* p_msc) { msc_cbw_t const* p_cbw = &p_msc->cbw; bool writable = true; if (tud_msc_is_writable_cb) { writable = tud_msc_is_writable_cb(p_cbw->lun); } if (!writable) { // Not writable, complete this SCSI op with error // Sense = Write protected tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_DATA_PROTECT, 0x27, 0x00); fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED); return; } // remaining bytes capped at class buffer uint16_t nbytes = (uint16_t)tu_min32(CFG_TUD_MSC_EP_BUFSIZE, p_cbw->total_bytes - p_msc->xferred_len); // Write10 callback will be called later when usb transfer complete TU_ASSERT(usbd_edpt_xfer(p_msc->rhport, p_msc->ep_out, _mscd_epbuf.buf, nbytes),); } // process new data arrived from WRITE10 static void proc_write10_host_data(mscd_interface_t* p_msc, uint32_t xferred_bytes) { msc_cbw_t const* p_cbw = &p_msc->cbw; uint16_t const block_sz = rdwr10_get_blocksize(p_cbw); // already verified non-zero // Adjust lba & offset with transferred bytes uint32_t const lba = rdwr10_get_lba(p_cbw->command) + (p_msc->xferred_len / block_sz); uint32_t const offset = p_msc->xferred_len % block_sz; p_msc->pending_io = 1; int32_t nbytes = tud_msc_write10_cb(p_cbw->lun, lba, offset, _mscd_epbuf.buf, xferred_bytes); if (nbytes != TUD_MSC_RET_ASYNC) { p_msc->pending_io = 0; proc_write_io_data(p_msc, xferred_bytes, nbytes); } } static void proc_write_io_data(mscd_interface_t* p_msc, uint32_t xferred_bytes, int32_t nbytes) { if (nbytes < 0) { // nbytes is status switch (nbytes) { case TUD_MSC_RET_ERROR: // IO error -> failed this scsi op TU_LOG_DRV(" IO write() failed\r\n"); set_sense_medium_not_present(p_msc->cbw.lun); fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED); break; default: break; } } else { if ((uint32_t)nbytes < xferred_bytes) { // Application consume less than what we got including TUD_MSC_RET_BUSY (0) const uint32_t left_over = xferred_bytes - (uint32_t)nbytes; if (nbytes > 0) { memmove(_mscd_epbuf.buf, _mscd_epbuf.buf + nbytes, left_over); } // fake a transfer complete with adjusted parameters --> callback will be invoked with adjusted parameters dcd_event_xfer_complete(p_msc->rhport, p_msc->ep_out, left_over, XFER_RESULT_SUCCESS, false); } else { // Application consume all bytes in our buffer p_msc->xferred_len += xferred_bytes; if (p_msc->xferred_len >= p_msc->total_len) { // Data Stage is complete p_msc->stage = MSC_STAGE_STATUS; } else { // prepare to receive more data from host proc_write10_cmd(p_msc); } } } } #endif