/* * The MIT License (MIT) * * Copyright (c) 2021 Koji Kitayama * Portions copyrighted (c) 2021 Roland Winistoerfer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if CFG_TUH_ENABLED && (CFG_TUSB_MCU == OPT_MCU_RX63X || \ CFG_TUSB_MCU == OPT_MCU_RX65X || \ CFG_TUSB_MCU == OPT_MCU_RX72N || \ CFG_TUSB_MCU == OPT_MCU_RAXXX) #include "host/hcd.h" #include "link_type.h" #if TU_CHECK_MCU(OPT_MCU_RX63X, OPT_MCU_RX65X, OPT_MCU_RX72N) #include "link_rx.h" #elif TU_CHECK_MCU(OPT_MCU_RAXXX) #include "link_ra.h" #else #error "Unsupported MCU" #endif //--------------------------------------------------------------------+ // MACRO TYPEDEF CONSTANT ENUM DECLARATION //--------------------------------------------------------------------+ /* LINK core registers */ #if defined(__CCRX__) #define LINK_REG ((LINK_REG_t __evenaccess*)LINK_REG_BASE) #else #define LINK_REG ((LINK_REG_t*)LINK_REG_BASE) #endif TU_ATTR_PACKED_BEGIN TU_ATTR_BIT_FIELD_ORDER_BEGIN typedef struct TU_ATTR_PACKED { union { struct { uint16_t : 8; uint16_t TRCLR: 1; uint16_t TRENB: 1; uint16_t : 0; }; uint16_t TRE; }; uint16_t TRN; } reg_pipetre_t; typedef union TU_ATTR_PACKED { struct { volatile uint16_t u8: 8; volatile uint16_t : 0; }; volatile uint16_t u16; } hw_fifo_t; typedef struct TU_ATTR_PACKED { void *buf; /* the start address of a transfer data buffer */ uint16_t length; /* the number of bytes in the buffer */ uint16_t remaining; /* the number of bytes remaining in the buffer */ struct { uint32_t ep : 8; /* an assigned endpoint address */ uint32_t dev : 8; /* an assigned device address */ uint32_t ff : 1; /* `buf` is TU_FUFO or POD */ uint32_t : 0; }; } pipe_state_t; TU_ATTR_PACKED_END // End of definition of packed structs (used by the CCRX toolchain) TU_ATTR_BIT_FIELD_ORDER_END typedef struct { bool need_reset; /* The device has not been reset after connection. */ pipe_state_t pipe[10]; uint8_t ep[4][2][15]; /* a lookup table for a pipe index from an endpoint address */ uint8_t ctl_mps[5]; /* EP0 max packet size for each device */ } hcd_data_t; //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ static hcd_data_t _hcd; static unsigned find_pipe(unsigned xfer) { switch (xfer) { case TUSB_XFER_ISOCHRONOUS: for (int i = 1; i <= 2; ++i) { if (0 == _hcd.pipe[i].ep) return i; } break; case TUSB_XFER_BULK: for (int i = 3; i <= 5; ++i) { if (0 == _hcd.pipe[i].ep) return i; } for (int i = 1; i <= 1; ++i) { if (0 == _hcd.pipe[i].ep) return i; } break; case TUSB_XFER_INTERRUPT: for (int i = 6; i <= 9; ++i) { if (0 == _hcd.pipe[i].ep) return i; } break; default: /* No support for control transfer */ break; } return 0; } static volatile uint16_t* get_pipectr(unsigned num) { if (num) { return (volatile uint16_t*)&(LINK_REG->PIPE_CTR[num - 1]); } else { return (volatile uint16_t*)&(LINK_REG->DCPCTR); } } static volatile reg_pipetre_t* get_pipetre(unsigned num) { volatile reg_pipetre_t* tre = NULL; if ((1 <= num) && (num <= 5)) { tre = (volatile reg_pipetre_t*)&(LINK_REG->PIPE_TR[num - 1].E); } return tre; } static volatile uint16_t* addr_to_pipectr(uint8_t dev_addr, unsigned ep_addr) { const unsigned epn = tu_edpt_number(ep_addr); if (epn) { const unsigned dir_in = tu_edpt_dir(ep_addr); const unsigned num = _hcd.ep[dev_addr][dir_in][epn - 1]; return get_pipectr(num); } else { return get_pipectr(0); } } static unsigned edpt0_max_packet_size(void) { return LINK_REG->DCPMAXP_b.MXPS; } static unsigned edpt_max_packet_size(unsigned num) { LINK_REG->PIPESEL = num; return LINK_REG->PIPEMAXP_b.MXPS; } static inline void pipe_wait_for_ready(unsigned num) { while (LINK_REG->D0FIFOSEL_b.CURPIPE != num) ; while (!LINK_REG->D0FIFOCTR_b.FRDY) ; } static void pipe_write_packet(void *buf, volatile void *fifo, unsigned len) { volatile hw_fifo_t *reg = (volatile hw_fifo_t*)fifo; uintptr_t addr = (uintptr_t)buf; while (len >= 2) { reg->u16 = *(const uint16_t *)addr; addr += 2; len -= 2; } if (len) { reg->u8 = *(const uint8_t *)addr; ++addr; } } static void pipe_read_packet(void *buf, volatile void *fifo, unsigned len) { uint8_t *p = (uint8_t*)buf; volatile uint8_t *reg = (volatile uint8_t*)fifo; /* byte access is always at base register address */ while (len--) *p++ = *reg; } static bool pipe0_xfer_in(void) { pipe_state_t *pipe = &_hcd.pipe[0]; const unsigned rem = pipe->remaining; const unsigned mps = edpt0_max_packet_size(); const unsigned vld = LINK_REG->CFIFOCTR_b.DTLN; const unsigned len = TU_MIN(TU_MIN(rem, mps), vld); void *buf = pipe->buf; if (len) { LINK_REG->DCPCTR = LINK_REG_PIPE_CTR_PID_NAK; pipe_read_packet(buf, (volatile void*)&LINK_REG->CFIFO, len); pipe->buf = (uint8_t*)buf + len; } if (len < mps) LINK_REG->CFIFOCTR = LINK_REG_CFIFOCTR_BCLR_Msk; pipe->remaining = rem - len; if ((len < mps) || (rem == len)) { pipe->buf = NULL; return true; } LINK_REG->DCPCTR = LINK_REG_PIPE_CTR_PID_BUF; return false; } static bool pipe0_xfer_out(void) { pipe_state_t *pipe = &_hcd.pipe[0]; const unsigned rem = pipe->remaining; if (!rem) { pipe->buf = NULL; return true; } const unsigned mps = edpt0_max_packet_size(); const unsigned len = TU_MIN(mps, rem); void *buf = pipe->buf; if (len) { pipe_write_packet(buf, (volatile void*)&LINK_REG->CFIFO, len); pipe->buf = (uint8_t*)buf + len; } if (len < mps) LINK_REG->CFIFOCTR = LINK_REG_CFIFOCTR_BVAL_Msk; pipe->remaining = rem - len; return false; } static bool pipe_xfer_in(unsigned num) { pipe_state_t *pipe = &_hcd.pipe[num]; const unsigned rem = pipe->remaining; LINK_REG->D0FIFOSEL = num | LINK_REG_FIFOSEL_MBW_8BIT; const unsigned mps = edpt_max_packet_size(num); pipe_wait_for_ready(num); const unsigned vld = LINK_REG->D0FIFOCTR_b.DTLN; const unsigned len = TU_MIN(TU_MIN(rem, mps), vld); void *buf = pipe->buf; if (len) { pipe_read_packet(buf, (volatile void*)&LINK_REG->D0FIFO, len); pipe->buf = (uint8_t*)buf + len; } if (len < mps) LINK_REG->D0FIFOCTR = LINK_REG_CFIFOCTR_BCLR_Msk; LINK_REG->D0FIFOSEL = 0; while (LINK_REG->D0FIFOSEL_b.CURPIPE) ; /* if CURPIPE bits changes, check written value */ pipe->remaining = rem - len; if ((len < mps) || (rem == len)) { pipe->buf = NULL; return NULL != buf; } return false; } static bool pipe_xfer_out(unsigned num) { pipe_state_t *pipe = &_hcd.pipe[num]; const unsigned rem = pipe->remaining; if (!rem) { pipe->buf = NULL; return true; } LINK_REG->D0FIFOSEL = num | LINK_REG_FIFOSEL_MBW_16BIT | (TU_BYTE_ORDER == TU_BIG_ENDIAN ? LINK_REG_FIFOSEL_BIGEND : 0); const unsigned mps = edpt_max_packet_size(num); pipe_wait_for_ready(num); const unsigned len = TU_MIN(rem, mps); void *buf = pipe->buf; if (len) { pipe_write_packet(buf, (volatile void*)&LINK_REG->D0FIFO, len); pipe->buf = (uint8_t*)buf + len; } if (len < mps) LINK_REG->D0FIFOCTR = LINK_REG_CFIFOCTR_BVAL_Msk; LINK_REG->D0FIFOSEL = 0; while (LINK_REG->D0FIFOSEL_b.CURPIPE) ; /* if CURPIPE bits changes, check written value */ pipe->remaining = rem - len; return false; } static bool process_pipe0_xfer(uint8_t dev_addr, uint8_t ep_addr, void* buffer, uint16_t buflen) { (void)dev_addr; const unsigned dir_in = tu_edpt_dir(ep_addr); /* configure fifo direction and access unit settings */ if (dir_in) { /* IN, a byte */ LINK_REG->CFIFOSEL = LINK_REG_FIFOSEL_MBW_8BIT; while (LINK_REG->CFIFOSEL & LINK_REG_CFIFOSEL_ISEL_WRITE) ; } else { /* OUT, 2 bytes */ LINK_REG->CFIFOSEL = LINK_REG_CFIFOSEL_ISEL_WRITE | LINK_REG_FIFOSEL_MBW_16BIT | (TU_BYTE_ORDER == TU_BIG_ENDIAN ? LINK_REG_FIFOSEL_BIGEND : 0); while (!(LINK_REG->CFIFOSEL & LINK_REG_CFIFOSEL_ISEL_WRITE)) ; } pipe_state_t *pipe = &_hcd.pipe[0]; pipe->ep = ep_addr; pipe->length = buflen; pipe->remaining = buflen; if (buflen) { pipe->buf = buffer; if (!dir_in) { /* OUT */ TU_ASSERT(LINK_REG->DCPCTR_b.BSTS && (LINK_REG->USBREQ & 0x80)); pipe0_xfer_out(); } } else { /* ZLP */ pipe->buf = NULL; if (!dir_in) { /* OUT */ LINK_REG->CFIFOCTR = LINK_REG_CFIFOCTR_BVAL_Msk; } if (dir_in == LINK_REG->DCPCFG_b.DIR) { TU_ASSERT(LINK_REG_PIPE_CTR_PID_NAK == LINK_REG->DCPCTR_b.PID); LINK_REG->DCPCTR_b.SQSET = 1; LINK_REG->DCPCFG_b.DIR = dir_in ^ 1; } } LINK_REG->DCPCTR = LINK_REG_PIPE_CTR_PID_BUF; return true; } static bool process_pipe_xfer(uint8_t dev_addr, uint8_t ep_addr, void *buffer, uint16_t buflen) { const unsigned epn = tu_edpt_number(ep_addr); const unsigned dir_in = tu_edpt_dir(ep_addr); const unsigned num = _hcd.ep[dev_addr - 1][dir_in][epn - 1]; TU_ASSERT(num); pipe_state_t *pipe = &_hcd.pipe[num]; pipe->buf = buffer; pipe->length = buflen; pipe->remaining = buflen; if (!dir_in) { /* OUT */ if (buflen) { pipe_xfer_out(num); } else { /* ZLP */ LINK_REG->D0FIFOSEL = num; pipe_wait_for_ready(num); LINK_REG->D0FIFOCTR = LINK_REG_CFIFOCTR_BVAL_Msk; LINK_REG->D0FIFOSEL = 0; while (LINK_REG->D0FIFOSEL_b.CURPIPE) continue; /* if CURPIPE bits changes, check written value */ } } else { volatile uint16_t *ctr = get_pipectr(num); volatile reg_pipetre_t *pt = get_pipetre(num); if (pt) { const unsigned mps = edpt_max_packet_size(num); if (*ctr & 0x3) *ctr = LINK_REG_PIPE_CTR_PID_NAK; pt->TRE = TU_BIT(8); pt->TRN = (buflen + mps - 1) / mps; pt->TRENB = 1; } *ctr = LINK_REG_PIPE_CTR_PID_BUF; } return true; } static bool process_edpt_xfer(uint8_t dev_addr, uint8_t ep_addr, void* buffer, uint16_t buflen) { const unsigned epn = tu_edpt_number(ep_addr); if (0 == epn) { return process_pipe0_xfer(dev_addr, ep_addr, buffer, buflen); } else { return process_pipe_xfer(dev_addr, ep_addr, buffer, buflen); } } static void process_pipe0_bemp(uint8_t rhport) { (void)rhport; bool completed = pipe0_xfer_out(); if (completed) { pipe_state_t *pipe = &_hcd.pipe[0]; hcd_event_xfer_complete(pipe->dev, tu_edpt_addr(0, TUSB_DIR_OUT), pipe->length - pipe->remaining, XFER_RESULT_SUCCESS, true); } } static void process_pipe_nrdy(uint8_t rhport, unsigned num) { (void)rhport; unsigned result; uint16_t volatile *ctr = get_pipectr(num); // TU_LOG1("NRDY %d %x\n", num, *ctr); switch (*ctr & LINK_REG_PIPE_CTR_PID_Msk) { default: return; case LINK_REG_PIPE_CTR_PID_STALL: result = XFER_RESULT_STALLED; break; case LINK_REG_PIPE_CTR_PID_NAK: result = XFER_RESULT_FAILED; break; } pipe_state_t *pipe = &_hcd.pipe[num]; hcd_event_xfer_complete(pipe->dev, pipe->ep, pipe->length - pipe->remaining, result, true); } static void process_pipe_brdy(uint8_t rhport, unsigned num) { (void)rhport; pipe_state_t *pipe = &_hcd.pipe[num]; const unsigned dir_in = tu_edpt_dir(pipe->ep); bool completed; if (dir_in) { /* IN */ if (num) { completed = pipe_xfer_in(num); } else { completed = pipe0_xfer_in(); } } else { completed = pipe_xfer_out(num); } if (completed) { hcd_event_xfer_complete(pipe->dev, pipe->ep, pipe->length - pipe->remaining, XFER_RESULT_SUCCESS, true); // TU_LOG1("C %d %d\r\n", num, pipe->length - pipe->remaining); } } /*------------------------------------------------------------------*/ /* Host API *------------------------------------------------------------------*/ bool hcd_init(uint8_t rhport) { (void)rhport; LINK_REG->SYSCFG_b.SCKE = 1; while (!LINK_REG->SYSCFG_b.SCKE) ; LINK_REG->SYSCFG_b.DPRPU = 0; LINK_REG->SYSCFG_b.DRPD = 0; LINK_REG->SYSCFG_b.DCFM = 1; LINK_REG->DVSTCTR0_b.VBUSEN = 1; LINK_REG->SYSCFG_b.DRPD = 1; for (volatile int i = 0; i < 30000; ++i) ; LINK_REG->SYSCFG_b.USBE = 1; // MCU specific PHY init link_phy_init(); LINK_REG->PHYSLEW = 0x5; LINK_REG->DPUSR0R_FS_b.FIXPHY0 = 0u; /* Transceiver Output fixed */ /* Setup default control pipe */ LINK_REG->DCPCFG = LINK_REG_PIPECFG_SHTNAK_Msk; LINK_REG->DCPMAXP = 64; LINK_REG->INTENB0 = LINK_REG_INTSTS0_BRDY_Msk | LINK_REG_INTSTS0_NRDY_Msk | LINK_REG_INTSTS0_BEMP_Msk; LINK_REG->INTENB1 = LINK_REG_INTSTS1_SACK_Msk | LINK_REG_INTSTS1_SIGN_Msk | LINK_REG_INTSTS1_ATTCH_Msk | LINK_REG_INTSTS1_DTCH_Msk; LINK_REG->BEMPENB = 1; LINK_REG->NRDYENB = 1; LINK_REG->BRDYENB = 1; return true; } void hcd_int_enable(uint8_t rhport) { link_int_enable(rhport); } void hcd_int_disable(uint8_t rhport) { link_int_disable(rhport); } uint32_t hcd_frame_number(uint8_t rhport) { (void)rhport; /* The device must be reset at least once after connection * in order to start the frame counter. */ if (_hcd.need_reset) hcd_port_reset(rhport); return LINK_REG->FRMNUM_b.FRNM; } /*--------------------------------------------------------------------+ * Port API *--------------------------------------------------------------------+*/ bool hcd_port_connect_status(uint8_t rhport) { (void)rhport; return LINK_REG->INTSTS1_b.ATTCH ? true : false; } void hcd_port_reset(uint8_t rhport) { LINK_REG->DCPCTR = LINK_REG_PIPE_CTR_PID_NAK; while (LINK_REG->DCPCTR_b.PBUSY) ; hcd_int_disable(rhport); LINK_REG->DVSTCTR0_b.UACT = 0; if (LINK_REG->DCPCTR_b.SUREQ) LINK_REG->DCPCTR_b.SUREQCLR = 1; hcd_int_enable(rhport); /* Reset should be asserted 10-20ms. */ LINK_REG->DVSTCTR0_b.USBRST = 1; for (volatile int i = 0; i < 2400000; ++i) ; LINK_REG->DVSTCTR0_b.USBRST = 0; LINK_REG->DVSTCTR0_b.UACT = 1; _hcd.need_reset = false; } void hcd_port_reset_end(uint8_t rhport) { (void) rhport; } tusb_speed_t hcd_port_speed_get(uint8_t rhport) { (void)rhport; switch (LINK_REG->DVSTCTR0_b.RHST) { default: return TUSB_SPEED_INVALID; case LINK_REG_DVSTCTR0_RHST_FS: return TUSB_SPEED_FULL; case LINK_REG_DVSTCTR0_RHST_LS: return TUSB_SPEED_LOW; } } void hcd_device_close(uint8_t rhport, uint8_t dev_addr) { (void)rhport; uint16_t volatile *ctr; TU_ASSERT(dev_addr < 6,); /* USBa can only handle addresses from 0 to 5. */ if (!dev_addr) return; _hcd.ctl_mps[dev_addr] = 0; uint8_t *ep = &_hcd.ep[dev_addr - 1][0][0]; for (int i = 0; i < 2 * 15; ++i, ++ep) { unsigned num = *ep; if (!num || dev_addr != _hcd.pipe[num].dev) continue; ctr = (uint16_t volatile*)&LINK_REG->PIPE_CTR[num - 1]; *ctr = 0; LINK_REG->NRDYENB &= ~TU_BIT(num); LINK_REG->BRDYENB &= ~TU_BIT(num); LINK_REG->PIPESEL = num; LINK_REG->PIPECFG = 0; LINK_REG->PIPEMAXP = 0; _hcd.pipe[num].ep = 0; _hcd.pipe[num].dev = 0; *ep = 0; } } /*--------------------------------------------------------------------+ * Endpoints API *--------------------------------------------------------------------+*/ bool hcd_setup_send(uint8_t rhport, uint8_t dev_addr, uint8_t const setup_packet[8]) { (void)rhport; // TU_LOG1("S %d %x\n", dev_addr, LINK_REG->DCPCTR); TU_ASSERT(dev_addr < 6); /* USBa can only handle addresses from 0 to 5. */ TU_ASSERT(0 == LINK_REG->DCPCTR_b.SUREQ); LINK_REG->DCPCTR = LINK_REG_PIPE_CTR_PID_NAK; _hcd.pipe[0].buf = NULL; _hcd.pipe[0].length = 8; _hcd.pipe[0].remaining = 0; _hcd.pipe[0].dev = dev_addr; while (LINK_REG->DCPCTR_b.PBUSY) ; LINK_REG->DCPMAXP = (dev_addr << 12) | _hcd.ctl_mps[dev_addr]; /* Set direction in advance for DATA stage */ uint8_t const bmRequesttype = setup_packet[0]; LINK_REG->DCPCFG_b.DIR = tu_edpt_dir(bmRequesttype) ? 0: 1; uint16_t const* p = (uint16_t const*)(uintptr_t)&setup_packet[0]; LINK_REG->USBREQ = tu_htole16(p[0]); LINK_REG->USBVAL = p[1]; LINK_REG->USBINDX = p[2]; LINK_REG->USBLENG = p[3]; LINK_REG->DCPCTR_b.SUREQ = 1; return true; } bool hcd_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const *ep_desc) { (void)rhport; TU_ASSERT(dev_addr < 6); /* USBa can only handle addresses from 0 to 5. */ const unsigned ep_addr = ep_desc->bEndpointAddress; const unsigned epn = tu_edpt_number(ep_addr); const unsigned mps = tu_edpt_packet_size(ep_desc); if (0 == epn) { LINK_REG->DCPCTR = LINK_REG_PIPE_CTR_PID_NAK; hcd_devtree_info_t devtree; hcd_devtree_get_info(dev_addr, &devtree); uint16_t volatile *devadd = (uint16_t volatile *)(uintptr_t) &LINK_REG->DEVADD[0]; devadd += dev_addr; while (LINK_REG->DCPCTR_b.PBUSY) ; LINK_REG->DCPMAXP = (dev_addr << 12) | mps; *devadd = (TUSB_SPEED_FULL == devtree.speed) ? LINK_REG_DEVADD_USBSPD_FS : LINK_REG_DEVADD_USBSPD_LS; _hcd.ctl_mps[dev_addr] = mps; return true; } const unsigned dir_in = tu_edpt_dir(ep_addr); const unsigned xfer = ep_desc->bmAttributes.xfer; if (xfer == TUSB_XFER_ISOCHRONOUS && mps > 256) { /* USBa supports up to 256 bytes */ return false; } const unsigned num = find_pipe(xfer); if (!num) return false; _hcd.pipe[num].dev = dev_addr; _hcd.pipe[num].ep = ep_addr; _hcd.ep[dev_addr - 1][dir_in][epn - 1] = num; /* setup pipe */ hcd_int_disable(rhport); LINK_REG->PIPESEL = num; LINK_REG->PIPEMAXP = (dev_addr << 12) | mps; volatile uint16_t *ctr = get_pipectr(num); *ctr = LINK_REG_PIPE_CTR_ACLRM_Msk | LINK_REG_PIPE_CTR_SQCLR_Msk; *ctr = 0; unsigned cfg = ((1 ^ dir_in) << 4) | epn; if (xfer == TUSB_XFER_BULK) { cfg |= LINK_REG_PIPECFG_TYPE_BULK | LINK_REG_PIPECFG_SHTNAK_Msk | LINK_REG_PIPECFG_DBLB_Msk; } else if (xfer == TUSB_XFER_INTERRUPT) { cfg |= LINK_REG_PIPECFG_TYPE_INT; } else { cfg |= LINK_REG_PIPECFG_TYPE_ISO | LINK_REG_PIPECFG_DBLB_Msk; } LINK_REG->PIPECFG = cfg; LINK_REG->BRDYSTS = 0x1FFu ^ TU_BIT(num); LINK_REG->NRDYENB |= TU_BIT(num); LINK_REG->BRDYENB |= TU_BIT(num); if (!dir_in) { *ctr = LINK_REG_PIPE_CTR_PID_BUF; } hcd_int_enable(rhport); return true; } bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t *buffer, uint16_t buflen) { bool r; hcd_int_disable(rhport); // TU_LOG1("X %d %x %u\n", dev_addr, ep_addr, buflen); r = process_edpt_xfer(dev_addr, ep_addr, buffer, buflen); hcd_int_enable(rhport); return r; } bool hcd_edpt_clear_stall(uint8_t dev_addr, uint8_t ep_addr) { uint16_t volatile *ctr = addr_to_pipectr(dev_addr, ep_addr); TU_ASSERT(ctr); const uint32_t pid = *ctr & 0x3; if (pid & 2) { *ctr = pid & 2; *ctr = 0; } *ctr = LINK_REG_PIPE_CTR_SQCLR_Msk; unsigned const epn = tu_edpt_number(ep_addr); if (!epn) return true; if (!tu_edpt_dir(ep_addr)) { /* OUT */ *ctr = LINK_REG_PIPE_CTR_PID_BUF; } return true; } //--------------------------------------------------------------------+ // ISR //--------------------------------------------------------------------+ void hcd_int_handler(uint8_t rhport) { (void)rhport; #if defined(__CCRX__) static const int Mod37BitPosition[] = { -1, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13, 4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9, 5, 20, 8, 19, 18}; #endif unsigned is1 = LINK_REG->INTSTS1; unsigned is0 = LINK_REG->INTSTS0; /* clear active bits except VALID (don't write 0 to already cleared bits according to the HW manual) */ LINK_REG->INTSTS1 = ~((LINK_REG_INTSTS1_SACK_Msk | LINK_REG_INTSTS1_SIGN_Msk | LINK_REG_INTSTS1_ATTCH_Msk | LINK_REG_INTSTS1_DTCH_Msk) & is1); LINK_REG->INTSTS0 = ~((LINK_REG_INTSTS0_BRDY_Msk | LINK_REG_INTSTS0_NRDY_Msk | LINK_REG_INTSTS0_BEMP_Msk) & is0); // TU_LOG1("IS %04x %04x\n", is0, is1); is1 &= LINK_REG->INTENB1; is0 &= LINK_REG->INTENB0; if (is1 & LINK_REG_INTSTS1_SACK_Msk) { /* Set DATA1 in advance for the next transfer. */ LINK_REG->DCPCTR_b.SQSET = 1; hcd_event_xfer_complete( LINK_REG->DCPMAXP_b.DEVSEL, tu_edpt_addr(0, TUSB_DIR_OUT), 8, XFER_RESULT_SUCCESS, true); } if (is1 & LINK_REG_INTSTS1_SIGN_Msk) { hcd_event_xfer_complete( LINK_REG->DCPMAXP_b.DEVSEL, tu_edpt_addr(0, TUSB_DIR_OUT), 8, XFER_RESULT_FAILED, true); } if (is1 & LINK_REG_INTSTS1_ATTCH_Msk) { LINK_REG->DVSTCTR0_b.UACT = 1; _hcd.need_reset = true; LINK_REG->INTENB1 = (LINK_REG->INTENB1 & ~LINK_REG_INTSTS1_ATTCH_Msk) | LINK_REG_INTSTS1_DTCH_Msk; hcd_event_device_attach(rhport, true); } if (is1 & LINK_REG_INTSTS1_DTCH_Msk) { LINK_REG->DVSTCTR0_b.UACT = 0; if (LINK_REG->DCPCTR_b.SUREQ) LINK_REG->DCPCTR_b.SUREQCLR = 1; LINK_REG->INTENB1 = (LINK_REG->INTENB1 & ~LINK_REG_INTSTS1_DTCH_Msk) | LINK_REG_INTSTS1_ATTCH_Msk; hcd_event_device_remove(rhport, true); } if (is0 & LINK_REG_INTSTS0_BEMP_Msk) { const unsigned s = LINK_REG->BEMPSTS; LINK_REG->BEMPSTS = 0; if (s & 1) { process_pipe0_bemp(rhport); } } if (is0 & LINK_REG_INTSTS0_NRDY_Msk) { const unsigned m = LINK_REG->NRDYENB; unsigned s = LINK_REG->NRDYSTS & m; LINK_REG->NRDYSTS = ~s; while (s) { #if defined(__CCRX__) const unsigned num = Mod37BitPosition[(-s & s) % 37]; #else const unsigned num = __builtin_ctz(s); #endif process_pipe_nrdy(rhport, num); s &= ~TU_BIT(num); } } if (is0 & LINK_REG_INTSTS0_BRDY_Msk) { const unsigned m = LINK_REG->BRDYENB; unsigned s = LINK_REG->BRDYSTS & m; /* clear active bits (don't write 0 to already cleared bits according to the HW manual) */ LINK_REG->BRDYSTS = ~s; while (s) { #if defined(__CCRX__) const unsigned num = Mod37BitPosition[(-s & s) % 37]; #else const unsigned num = __builtin_ctz(s); #endif process_pipe_brdy(rhport, num); s &= ~TU_BIT(num); } } } #endif