/* * @brief LPC13xx UART chip driver * * @note * Copyright(C) NXP Semiconductors, 2012 * All rights reserved. * * @par * Software that is described herein is for illustrative purposes only * which provides customers with programming information regarding the * LPC products. This software is supplied "AS IS" without any warranties of * any kind, and NXP Semiconductors and its licensor disclaim any and * all warranties, express or implied, including all implied warranties of * merchantability, fitness for a particular purpose and non-infringement of * intellectual property rights. NXP Semiconductors assumes no responsibility * or liability for the use of the software, conveys no license or rights under any * patent, copyright, mask work right, or any other intellectual property rights in * or to any products. NXP Semiconductors reserves the right to make changes * in the software without notification. NXP Semiconductors also makes no * representation or warranty that such application will be suitable for the * specified use without further testing or modification. * * @par * Permission to use, copy, modify, and distribute this software and its * documentation is hereby granted, under NXP Semiconductors' and its * licensor's relevant copyrights in the software, without fee, provided that it * is used in conjunction with NXP Semiconductors microcontrollers. This * copyright, permission, and disclaimer notice must appear in all copies of * this code. */ #include "chip.h" /***************************************************************************** * Private types/enumerations/variables ****************************************************************************/ /***************************************************************************** * Public types/enumerations/variables ****************************************************************************/ /***************************************************************************** * Private functions ****************************************************************************/ /***************************************************************************** * Public functions ****************************************************************************/ /* Initializes the pUART peripheral */ void Chip_UART_Init(LPC_USART_T *pUART) { Chip_Clock_EnablePeriphClock(SYSCTL_CLOCK_UART0); Chip_Clock_SetUARTClockDiv(1); /* Enable FIFOs by default, reset them */ Chip_UART_SetupFIFOS(pUART, (UART_FCR_FIFO_EN | UART_FCR_RX_RS | UART_FCR_TX_RS)); /* Default 8N1, with DLAB disabled */ Chip_UART_ConfigData(pUART, (UART_LCR_WLEN8 | UART_LCR_SBS_1BIT | UART_LCR_PARITY_DIS)); /* Disable fractional divider */ pUART->FDR = 0x10; } /* De-initializes the pUART peripheral */ void Chip_UART_DeInit(LPC_USART_T *pUART) { (void) pUART; Chip_Clock_DisablePeriphClock(SYSCTL_CLOCK_UART0); } /* Transmit a byte array through the UART peripheral (non-blocking) */ int Chip_UART_Send(LPC_USART_T *pUART, const void *data, int numBytes) { int sent = 0; uint8_t *p8 = (uint8_t *) data; /* Send until the transmit FIFO is full or out of bytes */ while ((sent < numBytes) && ((Chip_UART_ReadLineStatus(pUART) & UART_LSR_THRE) != 0)) { Chip_UART_SendByte(pUART, *p8); p8++; sent++; } return sent; } /* Transmit a byte array through the UART peripheral (blocking) */ int Chip_UART_SendBlocking(LPC_USART_T *pUART, const void *data, int numBytes) { int pass, sent = 0; uint8_t *p8 = (uint8_t *) data; while (numBytes > 0) { pass = Chip_UART_Send(pUART, p8, numBytes); numBytes -= pass; sent += pass; p8 += pass; } return sent; } /* Read data through the UART peripheral (non-blocking) */ int Chip_UART_Read(LPC_USART_T *pUART, void *data, int numBytes) { int readBytes = 0; uint8_t *p8 = (uint8_t *) data; /* Send until the transmit FIFO is full or out of bytes */ while ((readBytes < numBytes) && ((Chip_UART_ReadLineStatus(pUART) & UART_LSR_RDR) != 0)) { *p8 = Chip_UART_ReadByte(pUART); p8++; readBytes++; } return readBytes; } /* Read data through the UART peripheral (blocking) */ int Chip_UART_ReadBlocking(LPC_USART_T *pUART, void *data, int numBytes) { int pass, readBytes = 0; uint8_t *p8 = (uint8_t *) data; while (readBytes < numBytes) { pass = Chip_UART_Read(pUART, p8, numBytes); numBytes -= pass; readBytes += pass; p8 += pass; } return readBytes; } /* Determines and sets best dividers to get a target bit rate */ uint32_t Chip_UART_SetBaud(LPC_USART_T *pUART, uint32_t baudrate) { uint32_t div, divh, divl, clkin; /* Determine UART clock in rate without FDR */ clkin = Chip_Clock_GetMainClockRate(); div = clkin / (baudrate * 16); /* High and low halves of the divider */ divh = div / 256; divl = div - (divh * 256); Chip_UART_EnableDivisorAccess(pUART); Chip_UART_SetDivisorLatches(pUART, divl, divh); Chip_UART_DisableDivisorAccess(pUART); /* Fractional FDR alreadt setup for 1 in UART init */ return clkin / div; } /* UART receive-only interrupt handler for ring buffers */ void Chip_UART_RXIntHandlerRB(LPC_USART_T *pUART, RINGBUFF_T *pRB) { /* New data will be ignored if data not popped in time */ while (Chip_UART_ReadLineStatus(pUART) & UART_LSR_RDR) { uint8_t ch = Chip_UART_ReadByte(pUART); RingBuffer_Insert(pRB, &ch); } } /* UART transmit-only interrupt handler for ring buffers */ void Chip_UART_TXIntHandlerRB(LPC_USART_T *pUART, RINGBUFF_T *pRB) { uint8_t ch; /* Fill FIFO until full or until TX ring buffer is empty */ while ((Chip_UART_ReadLineStatus(pUART) & UART_LSR_THRE) != 0 && RingBuffer_Pop(pRB, &ch)) { Chip_UART_SendByte(pUART, ch); } } /* Populate a transmit ring buffer and start UART transmit */ uint32_t Chip_UART_SendRB(LPC_USART_T *pUART, RINGBUFF_T *pRB, const void *data, int bytes) { uint32_t ret; uint8_t *p8 = (uint8_t *) data; /* Don't let UART transmit ring buffer change in the UART IRQ handler */ Chip_UART_IntDisable(pUART, UART_IER_THREINT); /* Move as much data as possible into transmit ring buffer */ ret = RingBuffer_InsertMult(pRB, p8, bytes); Chip_UART_TXIntHandlerRB(pUART, pRB); /* Add additional data to transmit ring buffer if possible */ ret += RingBuffer_InsertMult(pRB, (p8 + ret), (bytes - ret)); /* Enable UART transmit interrupt */ Chip_UART_IntEnable(pUART, UART_IER_THREINT); return ret; } /* Copy data from a receive ring buffer */ int Chip_UART_ReadRB(LPC_USART_T *pUART, RINGBUFF_T *pRB, void *data, int bytes) { (void) pUART; return RingBuffer_PopMult(pRB, (uint8_t *) data, bytes); } /* UART receive/transmit interrupt handler for ring buffers */ void Chip_UART_IRQRBHandler(LPC_USART_T *pUART, RINGBUFF_T *pRXRB, RINGBUFF_T *pTXRB) { /* Handle transmit interrupt if enabled */ if (pUART->IER & UART_IER_THREINT) { Chip_UART_TXIntHandlerRB(pUART, pTXRB); /* Disable transmit interrupt if the ring buffer is empty */ if (RingBuffer_IsEmpty(pTXRB)) { Chip_UART_IntDisable(pUART, UART_IER_THREINT); } } /* Handle receive interrupt */ Chip_UART_RXIntHandlerRB(pUART, pRXRB); } /* Determines and sets best dividers to get a target baud rate */ uint32_t Chip_UART_SetBaudFDR(LPC_USART_T *pUART, uint32_t baudrate) { uint32_t uClk; uint32_t dval, mval; uint32_t dl; uint32_t rate16 = 16 * baudrate; uint32_t actualRate = 0; /* Get Clock rate */ uClk = Chip_Clock_GetMainClockRate(); /* The fractional is calculated as (PCLK % (16 * Baudrate)) / (16 * Baudrate) * Let's make it to be the ratio DivVal / MulVal */ dval = uClk % rate16; /* The PCLK / (16 * Baudrate) is fractional * => dval = pclk % rate16 * mval = rate16; * now mormalize the ratio * dval / mval = 1 / new_mval * new_mval = mval / dval * new_dval = 1 */ if (dval > 0) { mval = rate16 / dval; dval = 1; /* In case mval still bigger then 4 bits * no adjustment require */ if (mval > 12) { dval = 0; } } dval &= 0xf; mval &= 0xf; dl = uClk / (rate16 + rate16 *dval / mval); /* Update UART registers */ Chip_UART_EnableDivisorAccess(pUART); Chip_UART_SetDivisorLatches(pUART, UART_LOAD_DLL(dl), UART_LOAD_DLM(dl)); Chip_UART_DisableDivisorAccess(pUART); /* Set best fractional divider */ pUART->FDR = (UART_FDR_MULVAL(mval) | UART_FDR_DIVADDVAL(dval)); /* Return actual baud rate */ actualRate = uClk / (16 * dl + 16 * dl * dval / mval); return actualRate; }