Files
tinyUSB/src/class/net/ncm_device.c
2023-08-20 18:24:08 +02:00

1031 lines
36 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2023 Hardy Griech
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
/**
* Small Glossary (from the spec)
* --------------
* Datagram - A collection of bytes forming a single item of information, passed as a unit from source to destination.
* NCM - Network Control Model
* NDP - NCM Datagram Pointer: NTB structure that delineates Datagrams (typically Ethernet frames) within an NTB
* NTB - NCM Transfer Block: a data structure for efficient USB encapsulation of one or more datagrams
* Each NTB is designed to be a single USB transfer
* NTH - NTB Header: a data structure at the front of each NTB, which provides the information needed to validate
* the NTB and begin decoding
*
* Some explanations
* -----------------
* - rhport is the USB port of the device, in most cases "0"
* - itf_data_alt if != 0 -> data xmit/recv are allowed (see spec)
* - ep_in IN endpoints take data from the device intended to go in to the host (the device transmits)
* - ep_out OUT endpoints send data out of the host to the device (the device receives)
*/
#include "tusb_option.h"
#if ECLIPSE_GUI || ( CFG_TUD_ENABLED && CFG_TUD_NCM )
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include "device/usbd.h"
#include "device/usbd_pvt.h"
#include "net_device.h"
#include "ncm.h"
#if !defined(tu_static) || ECLIPSE_GUI
// TinyUSB <=0.15.0 does not know "tu_static"
#define tu_static static
#endif
#if 0
#define DEBUG_OUT(...) printf(__VA_ARGS__)
#define DEBUG_OUT_ENABLED
#else
#define DEBUG_OUT(...)
#endif
#if 0
#define INFO_OUT(...) printf(__VA_ARGS__)
#else
#define INFO_OUT(...)
#endif
#if 1
#define ERROR_OUT(...) printf(__VA_ARGS__)
#else
#define ERROR_OUT(...)
#endif
// calculate alignment of xmit datagrams within an NTB
#define XMIT_ALIGN_OFFSET(x) ((CFG_TUD_NCM_ALIGNMENT - ((x) & (CFG_TUD_NCM_ALIGNMENT - 1))) & (CFG_TUD_NCM_ALIGNMENT - 1))
//-----------------------------------------------------------------------------
//
// Module global things
//
#define XMIT_NTB_N CFG_TUD_NCM_IN_NTB_N
#define RECV_NTB_N CFG_TUD_NCM_OUT_NTB_N
typedef struct {
// general
uint8_t ep_in; //!< endpoint for outgoing datagrams (naming is a little bit confusing)
uint8_t ep_out; //!< endpoint for incoming datagrams (naming is a little bit confusing)
uint8_t ep_notif; //!< endpoint for notifications
uint8_t itf_num; //!< interface number
uint8_t itf_data_alt; //!< ==0 -> no endpoints, i.e. no network traffic, ==1 -> normal operation with two endpoints (spec, chapter 5.3)
uint8_t rhport; //!< storage of \a rhport because some callbacks are done without it
// recv handling
recv_ntb_t recv_ntb[RECV_NTB_N]; //!< actual recv NTBs
recv_ntb_t *recv_free_ntb[RECV_NTB_N]; //!< free list of recv NTBs
recv_ntb_t *recv_ready_ntb[RECV_NTB_N]; //!< NTBs waiting for transmission to glue logic
recv_ntb_t *recv_tinyusb_ntb; //!< buffer for the running transfer TinyUSB -> driver
recv_ntb_t *recv_glue_ntb; //!< buffer for the running transfer driver -> glue logic
uint16_t recv_glue_ntb_datagram_ndx; //!< index into \a recv_glue_ntb_datagram
// xmit handling
xmit_ntb_t xmit_ntb[XMIT_NTB_N]; //!< actual xmit NTBs
xmit_ntb_t *xmit_free_ntb[XMIT_NTB_N]; //!< free list of xmit NTBs
xmit_ntb_t *xmit_ready_ntb[XMIT_NTB_N]; //!< NTBs waiting for transmission to TinyUSB
xmit_ntb_t *xmit_tinyusb_ntb; //!< buffer for the running transfer driver -> TinyUSB
xmit_ntb_t *xmit_glue_ntb; //!< buffer for the running transfer glue logic -> driver
uint16_t xmit_sequence; //!< NTB sequence counter
uint16_t xmit_glue_ntb_datagram_ndx; //!< index into \a xmit_glue_ntb_datagram
// notification handling
enum {
NOTIFICATION_SPEED,
NOTIFICATION_CONNECTED,
NOTIFICATION_DONE
} notification_xmit_state; //!< state of notification transmission
bool notification_xmit_is_running; //!< notification is currently transmitted
} ncm_interface_t;
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN tu_static ncm_interface_t ncm_interface;
/**
* This is the NTB parameter structure
*
* \attention
* We are lucky, that byte order is correct
*/
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN tu_static const ntb_parameters_t ntb_parameters = {
.wLength = sizeof(ntb_parameters_t),
.bmNtbFormatsSupported = 0x01, // 16-bit NTB supported
.dwNtbInMaxSize = CFG_TUD_NCM_IN_NTB_MAX_SIZE,
.wNdbInDivisor = 4,
.wNdbInPayloadRemainder = 0,
.wNdbInAlignment = CFG_TUD_NCM_ALIGNMENT,
.wReserved = 0,
.dwNtbOutMaxSize = CFG_TUD_NCM_OUT_NTB_MAX_SIZE,
.wNdbOutDivisor = 4,
.wNdbOutPayloadRemainder = 0,
.wNdbOutAlignment = CFG_TUD_NCM_ALIGNMENT,
.wNtbOutMaxDatagrams = 6 // 0=no limit
};
// Some confusing remarks about wNtbOutMaxDatagrams...
// ==1 -> SystemView packets/s goes up to 2000 and events are lost during startup
// ==0 -> SystemView runs fine, iperf shows in wireshark a lot of error
// ==6 -> SystemView runs fine, iperf also
// >6 -> iperf starts to show errors
// -> 6 seems to be the best value. Why? Don't know, perhaps only on my system?
// switch \a INFO_OUT on to see interesting values for this.
//
// iperf: for MSS in 100 200 400 800 1200 1450 1500; do iperf -c 192.168.14.1 -e -i 1 -M $MSS -l 8192 -P 1; sleep 2; done
// sysview: SYSTICKS_PER_SEC=35000, IDLE_US=1000, PRINT_MOD=1000
//
//-----------------------------------------------------------------------------
//
// everything about notifications
//
tu_static struct ncm_notify_t ncm_notify_connected = {
.header = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_IN
},
.bRequest = CDC_NOTIF_NETWORK_CONNECTION,
.wValue = 1 /* Connected */,
.wLength = 0,
},
};
tu_static struct ncm_notify_t ncm_notify_speed_change = {
.header = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_IN
},
.bRequest = CDC_NOTIF_CONNECTION_SPEED_CHANGE,
.wLength = 8,
},
.downlink = 1000000,
.uplink = 1000000,
};
static void notification_xmit(uint8_t rhport, bool force_next)
/**
* Transmit next notification to the host (if appropriate).
* Notifications are transferred to the host once during connection setup.
*/
{
DEBUG_OUT("notification_xmit(%d, %d) - %d %d\n", force_next, rhport, ncm_interface.notification_xmit_state, ncm_interface.notification_xmit_is_running);
if ( !force_next && ncm_interface.notification_xmit_is_running) {
return;
}
if (ncm_interface.notification_xmit_state == NOTIFICATION_SPEED) {
DEBUG_OUT(" NOTIFICATION_SPEED\n");
ncm_notify_speed_change.header.wIndex = ncm_interface.itf_num;
usbd_edpt_xfer(rhport, ncm_interface.ep_notif, (uint8_t*) &ncm_notify_speed_change, sizeof(ncm_notify_speed_change));
ncm_interface.notification_xmit_state = NOTIFICATION_CONNECTED;
ncm_interface.notification_xmit_is_running = true;
}
else if (ncm_interface.notification_xmit_state == NOTIFICATION_CONNECTED) {
DEBUG_OUT(" NOTIFICATION_CONNECTED\n");
ncm_notify_connected.header.wIndex = ncm_interface.itf_num;
usbd_edpt_xfer(rhport, ncm_interface.ep_notif, (uint8_t*) &ncm_notify_connected, sizeof(ncm_notify_connected));
ncm_interface.notification_xmit_state = NOTIFICATION_DONE;
ncm_interface.notification_xmit_is_running = true;
}
else {
DEBUG_OUT(" NOTIFICATION_FINISHED\n");
}
} // notification_xmit
//-----------------------------------------------------------------------------
//
// everything about packet transmission (driver -> TinyUSB)
//
static void xmit_put_ntb_into_free_list(xmit_ntb_t *free_ntb)
/**
* Put NTB into the transmitter free list.
*/
{
DEBUG_OUT("xmit_put_ntb_into_free_list() - %p\n", ncm_interface.xmit_tinyusb_ntb);
if (free_ntb == NULL) {
// can happen due to ZLPs
return;
}
for (int i = 0; i < XMIT_NTB_N; ++i) {
if (ncm_interface.xmit_free_ntb[i] == NULL) {
ncm_interface.xmit_free_ntb[i] = free_ntb;
return;
}
}
ERROR_OUT("(EE) xmit_put_ntb_into_free_list - no entry in free list\n"); // this should not happen
} // xmit_put_ntb_into_free_list
static xmit_ntb_t *xmit_get_free_ntb(void)
/**
* Get an NTB from the free list
*/
{
DEBUG_OUT("xmit_get_free_ntb()\n");
for (int i = 0; i < XMIT_NTB_N; ++i) {
if (ncm_interface.xmit_free_ntb[i] != NULL) {
xmit_ntb_t *free = ncm_interface.xmit_free_ntb[i];
ncm_interface.xmit_free_ntb[i] = NULL;
return free;
}
}
return NULL;
} // xmit_get_free_ntb
static void xmit_put_ntb_into_ready_list(xmit_ntb_t *ready_ntb)
/**
* Put a filled NTB into the ready list
*/
{
INFO_OUT("xmit_put_ntb_into_ready_list(%p) %d\n", ready_ntb, ready_ntb->nth.wBlockLength);
for (int i = 0; i < XMIT_NTB_N; ++i) {
if (ncm_interface.xmit_ready_ntb[i] == NULL) {
ncm_interface.xmit_ready_ntb[i] = ready_ntb;
return;
}
}
ERROR_OUT("(EE) xmit_put_ntb_into_ready_list: ready list full\n"); // this should not happen
} // xmit_put_ntb_into_ready_list
static xmit_ntb_t *xmit_get_next_ready_ntb(void)
/**
* Get the next NTB from the ready list (and remove it from the list).
* If the ready list is empty, return NULL.
*/
{
xmit_ntb_t *r = NULL;
r = ncm_interface.xmit_ready_ntb[0];
memmove(ncm_interface.xmit_ready_ntb + 0, ncm_interface.xmit_ready_ntb + 1, sizeof(ncm_interface.xmit_ready_ntb) - sizeof(ncm_interface.xmit_ready_ntb[0]));
ncm_interface.xmit_ready_ntb[XMIT_NTB_N - 1] = NULL;
DEBUG_OUT("recv_get_next_ready_ntb: %p\n", r);
return r;
} // xmit_get_next_ready_ntb
static bool xmit_insert_required_zlp(uint8_t rhport, uint16_t xferred_bytes)
/**
* Transmit a ZLP if required
*
* \note
* Insertion of the ZLPs is a little bit different then described in the spec.
* But the below implementation actually works. Don't know if this is a spec
* or TinyUSB issue.
*
* \pre
* This must be called from netd_xfer_cb() so that ep_in is ready
*/
{
DEBUG_OUT("xmit_insert_required_zlp(%d,%d)\n", rhport, xferred_bytes);
if (xferred_bytes == 0 || xferred_bytes % CFG_TUD_NET_ENDPOINT_SIZE != 0) {
return false;
}
TU_ASSERT(ncm_interface.itf_data_alt == 1, false);
TU_ASSERT( !usbd_edpt_busy(rhport, ncm_interface.ep_in), false);
INFO_OUT("xmit_insert_required_zlp! (%u)\n", (unsigned)xferred_bytes);
// start transmission of the ZLP
usbd_edpt_xfer(rhport, ncm_interface.ep_in, NULL, 0);
return true;
} // xmit_insert_required_zlp
static void xmit_start_if_possible(uint8_t rhport)
/**
* Start transmission if it there is a waiting packet and if can be done from interface side.
*/
{
DEBUG_OUT("xmit_start_if_possible()\n");
if (ncm_interface.xmit_tinyusb_ntb != NULL) {
DEBUG_OUT(" !xmit_start_if_possible 1\n");
return;
}
if (ncm_interface.itf_data_alt != 1) {
ERROR_OUT("(II) !xmit_start_if_possible 2\n");
return;
}
if (usbd_edpt_busy(rhport, ncm_interface.ep_in)) {
INFO_OUT(" !xmit_start_if_possible 3\n");
return;
}
ncm_interface.xmit_tinyusb_ntb = xmit_get_next_ready_ntb();
if (ncm_interface.xmit_tinyusb_ntb == NULL) {
if (ncm_interface.xmit_glue_ntb == NULL || ncm_interface.xmit_glue_ntb_datagram_ndx == 0) {
// -> really nothing is waiting
return;
}
ncm_interface.xmit_tinyusb_ntb = ncm_interface.xmit_glue_ntb;
ncm_interface.xmit_glue_ntb = NULL;
}
#ifdef DEBUG_OUT_ENABLED
{
uint16_t len = ncm_interface.xmit_tinyusb_ntb->nth.wBlockLength;
DEBUG_OUT(" %d\n", len);
for (int i = 0; i < len; ++i) {
DEBUG_OUT(" %02x", ncm_interface.xmit_tinyusb_ntb->data[i]);
}
DEBUG_OUT("\n");
}
#endif
if (ncm_interface.xmit_glue_ntb_datagram_ndx != 1) {
DEBUG_OUT(">> %d %d\n", ncm_interface.xmit_tinyusb_ntb->nth.wBlockLength, ncm_interface.xmit_glue_ntb_datagram_ndx);
}
// Kick off an endpoint transfer
usbd_edpt_xfer(0, ncm_interface.ep_in, ncm_interface.xmit_tinyusb_ntb->data, ncm_interface.xmit_tinyusb_ntb->nth.wBlockLength);
} // xmit_start_if_possible
static bool xmit_requested_datagram_fits_into_current_ntb(uint16_t datagram_size)
/**
* check if a new datagram fits into the current NTB
*/
{
DEBUG_OUT("xmit_requested_datagram_fits_into_current_ntb(%d) - %p %p\n", datagram_size, ncm_interface.xmit_tinyusb_ntb, ncm_interface.xmit_glue_ntb);
if (ncm_interface.xmit_glue_ntb == NULL) {
return false;
}
if (ncm_interface.xmit_glue_ntb_datagram_ndx >= CFG_TUD_NCM_MAX_DATAGRAMS_PER_NTB) {
return false;
}
if (ncm_interface.xmit_glue_ntb->nth.wBlockLength + datagram_size + XMIT_ALIGN_OFFSET(datagram_size) > CFG_TUD_NCM_OUT_NTB_MAX_SIZE) {
return false;
}
return true;
} // xmit_requested_datagram_fits_into_current_ntb
static bool xmit_setup_next_glue_ntb(void)
/**
* Setup an NTB for the glue logic
*/
{
DEBUG_OUT("xmit_setup_next_glue_ntb - %p\n", ncm_interface.xmit_glue_ntb);
if (ncm_interface.xmit_glue_ntb != NULL) {
// put NTB into waiting list (the new datagram did not fit in)
xmit_put_ntb_into_ready_list(ncm_interface.xmit_glue_ntb);
}
ncm_interface.xmit_glue_ntb = xmit_get_free_ntb(); // get next buffer (if any)
if (ncm_interface.xmit_glue_ntb == NULL) {
DEBUG_OUT(" xmit_setup_next_glue_ntb - nothing free\n"); // should happen rarely
return false;
}
ncm_interface.xmit_glue_ntb_datagram_ndx = 0;
xmit_ntb_t *ntb = ncm_interface.xmit_glue_ntb;
// Fill in NTB header
ntb->nth.dwSignature = NTH16_SIGNATURE;
ntb->nth.wHeaderLength = sizeof(ntb->nth);
ntb->nth.wSequence = ncm_interface.xmit_sequence++;
ntb->nth.wBlockLength = sizeof(ntb->nth) + sizeof(ntb->ndp) + sizeof(ntb->ndp_datagram);
ntb->nth.wNdpIndex = sizeof(ntb->nth);
// Fill in NDP16 header and terminator
ntb->ndp.dwSignature = NDP16_SIGNATURE_NCM0;
ntb->ndp.wLength = sizeof(ntb->ndp) + sizeof(ntb->ndp_datagram);
ntb->ndp.wNextNdpIndex = 0;
memset(ntb->ndp_datagram, 0, sizeof(ntb->ndp_datagram));
return true;
} // xmit_setup_next_glue_ntb
//-----------------------------------------------------------------------------
//
// all the recv_*() stuff (TinyUSB -> driver -> glue logic)
//
static recv_ntb_t *recv_get_free_ntb(void)
/**
* Return pointer to an available receive buffer or NULL.
* Returned buffer (if any) has the size \a CFG_TUD_NCM_OUT_NTB_MAX_SIZE.
*/
{
DEBUG_OUT("recv_get_free_ntb()\n");
for (int i = 0; i < RECV_NTB_N; ++i) {
if (ncm_interface.recv_free_ntb[i] != NULL) {
recv_ntb_t *free = ncm_interface.recv_free_ntb[i];
ncm_interface.recv_free_ntb[i] = NULL;
return free;
}
}
return NULL;
} // recv_get_free_ntb
static recv_ntb_t *recv_get_next_ready_ntb(void)
/**
* Get the next NTB from the ready list (and remove it from the list).
* If the ready list is empty, return NULL.
*/
{
recv_ntb_t *r = NULL;
r = ncm_interface.recv_ready_ntb[0];
memmove(ncm_interface.recv_ready_ntb + 0, ncm_interface.recv_ready_ntb + 1, sizeof(ncm_interface.recv_ready_ntb) - sizeof(ncm_interface.recv_ready_ntb[0]));
ncm_interface.recv_ready_ntb[RECV_NTB_N - 1] = NULL;
DEBUG_OUT("recv_get_next_ready_ntb: %p\n", r);
return r;
} // recv_get_next_ready_ntb
static void recv_put_ntb_into_free_list(recv_ntb_t *free_ntb)
/**
*
*/
{
DEBUG_OUT("recv_put_ntb_into_free_list(%p)\n", free_ntb);
for (int i = 0; i < RECV_NTB_N; ++i) {
if (ncm_interface.recv_free_ntb[i] == NULL) {
ncm_interface.recv_free_ntb[i] = free_ntb;
return;
}
}
ERROR_OUT("(EE) recv_put_ntb_into_free_list - no entry in free list\n"); // this should not happen
} // recv_put_ntb_into_free_list
static void recv_put_ntb_into_ready_list(recv_ntb_t *ready_ntb)
/**
* The \a ncm_interface.recv_tinyusb_ntb is filled,
* put this buffer into the waiting list and free the receive logic.
*/
{
DEBUG_OUT("recv_put_ntb_into_ready_list(%p) %d\n", ready_ntb, ready_ntb->nth.wBlockLength);
for (int i = 0; i < RECV_NTB_N; ++i) {
if (ncm_interface.recv_ready_ntb[i] == NULL) {
ncm_interface.recv_ready_ntb[i] = ready_ntb;
return;
}
}
ERROR_OUT("(EE) recv_put_ntb_into_ready_list: ready list full\n"); // this should not happen
} // recv_put_ntb_into_ready_list
static void recv_try_to_start_new_reception(uint8_t rhport)
/**
* If possible, start a new reception TinyUSB -> driver.
* Return value is actually not of interest.
*/
{
DEBUG_OUT("recv_try_to_start_new_reception(%d)\n", rhport);
if (ncm_interface.itf_data_alt != 1) {
return;
}
if (ncm_interface.recv_tinyusb_ntb != NULL) {
return;
}
if (usbd_edpt_busy(ncm_interface.rhport, ncm_interface.ep_out)) {
return;
}
ncm_interface.recv_tinyusb_ntb = recv_get_free_ntb();
if (ncm_interface.recv_tinyusb_ntb == NULL) {
return;
}
// initiate transfer
DEBUG_OUT(" start reception\n");
bool r = usbd_edpt_xfer(0, ncm_interface.ep_out, ncm_interface.recv_tinyusb_ntb->data, CFG_TUD_NCM_OUT_NTB_MAX_SIZE);
if ( !r) {
recv_put_ntb_into_free_list(ncm_interface.recv_tinyusb_ntb);
ncm_interface.recv_tinyusb_ntb = NULL;
}
} // recv_try_to_start_new_reception
static bool recv_validate_datagram(const recv_ntb_t *ntb, uint16_t len)
/**
* Validate incoming datagram.
* \return true if valid
*
* \note
* \a ndp16->wNextNdpIndex != 0 is not supported
*/
{
const nth16_t *nth16 = &(ntb->nth);
DEBUG_OUT("recv_validate_datagram(%p)\n", ntb);
//
// check header
//
if (nth16->wHeaderLength != sizeof(nth16_t))
{
ERROR_OUT("(EE) ill nth16 length: %d\n", nth16->wHeaderLength);
return false;
}
if (nth16->dwSignature != NTH16_SIGNATURE) {
ERROR_OUT("(EE) ill signature: 0x%08x\n", (unsigned)nth16->dwSignature);
return false;
}
if (len < sizeof(nth16_t) + sizeof(ndp16_t) + 2*sizeof(ndp16_datagram_t)) {
ERROR_OUT("(EE) ill min len: %d\n", len);
return false;
}
if (nth16->wBlockLength > len) {
ERROR_OUT("(EE) ill block length: %d > %d\n", nth16->wBlockLength, len);
return false;
}
if (nth16->wBlockLength > CFG_TUD_NCM_OUT_NTB_MAX_SIZE) {
ERROR_OUT("(EE) ill block length2: %d > %d\n", nth16->wBlockLength, CFG_TUD_NCM_OUT_NTB_MAX_SIZE);
return false;
}
if (nth16->wNdpIndex < sizeof(nth16) || nth16->wNdpIndex > len - (sizeof(ndp16_t) + 2*sizeof(ndp16_datagram_t))) {
ERROR_OUT("(EE) ill position of first ndp: %d (%d)\n", nth16->wNdpIndex, len);
return false;
}
//
// check (first) NDP(16)
//
const ndp16_t *ndp16 = (ndp16_t *)(ntb->data + nth16->wNdpIndex);
if (ndp16->wLength < sizeof(ndp16_t) + 2*sizeof(ndp16_datagram_t)) {
ERROR_OUT("(EE) ill ndp16 length: %d\n", ndp16->wLength);
return false;
}
if (ndp16->dwSignature != NDP16_SIGNATURE_NCM0 && ndp16->dwSignature != NDP16_SIGNATURE_NCM1) {
ERROR_OUT("(EE) ill signature: 0x%08x\n", (unsigned)ndp16->dwSignature);
return false;
}
if (ndp16->wNextNdpIndex != 0) {
ERROR_OUT("(EE) cannot handle wNextNdpIndex!=0 (%d)\n", ndp16->wNextNdpIndex);
return false;
}
const ndp16_datagram_t *ndp16_datagram = (ndp16_datagram_t *)(ntb->data + nth16->wNdpIndex + sizeof(ndp16_t));
int ndx = 0;
int max_ndx = (ndp16->wLength - sizeof(ndp16_t)) / sizeof(ndp16_datagram_t);
if (max_ndx > 2) {
// number of datagrams in NTB > 1
INFO_OUT("<< %d (%d)\n", max_ndx - 1, ntb->nth.wBlockLength);
}
if (ndp16_datagram[max_ndx-1].wDatagramIndex != 0 || ndp16_datagram[max_ndx-1].wDatagramLength != 0) {
INFO_OUT(" max_ndx != 0\n");
return false;
}
while (ndp16_datagram[ndx].wDatagramIndex != 0 && ndp16_datagram[ndx].wDatagramLength != 0) {
DEBUG_OUT(" << %d %d\n", ndp16_datagram[ndx].wDatagramIndex, ndp16_datagram[ndx].wDatagramLength);
if (ndp16_datagram[ndx].wDatagramIndex > len) {
ERROR_OUT("(EE) ill start of datagram[%d]: %d (%d)\n", ndx, ndp16_datagram[ndx].wDatagramIndex, len);
return false;
}
if (ndp16_datagram[ndx].wDatagramIndex + ndp16_datagram[ndx].wDatagramLength > len) {
ERROR_OUT("(EE) ill end of datagram[%d]: %d (%d)\n", ndx, ndp16_datagram[ndx].wDatagramIndex + ndp16_datagram[ndx].wDatagramLength, len);
return false;
}
++ndx;
}
for (int i = 0; i < len; ++i) {
DEBUG_OUT(" %02x", ntb->data[i]);
}
DEBUG_OUT("\n");
// -> ntb contains a valid packet structure
// ok... I did not check for garbage within the datagram indices...
return true;
} // recv_validate_datagram
static void recv_transfer_datagram_to_glue_logic(void)
/**
* Transfer the next (pending) datagram to the glue logic and return receive buffer if empty.
*/
{
DEBUG_OUT("recv_transfer_datagram_to_glue_logic()\n");
if (ncm_interface.recv_glue_ntb == NULL) {
ncm_interface.recv_glue_ntb = recv_get_next_ready_ntb();
DEBUG_OUT(" new buffer for glue logic: %p\n", ncm_interface.recv_glue_ntb);
ncm_interface.recv_glue_ntb_datagram_ndx = 0;
}
if (ncm_interface.recv_glue_ntb != NULL) {
const ndp16_datagram_t *ndp16_datagram = (ndp16_datagram_t *)(ncm_interface.recv_glue_ntb->data
+ ncm_interface.recv_glue_ntb->nth.wNdpIndex
+ sizeof(ndp16_t));
if (ndp16_datagram[ncm_interface.recv_glue_ntb_datagram_ndx].wDatagramIndex == 0) {
ERROR_OUT("(EE) SOMETHING WENT WRONG 1\n");
}
else if (ndp16_datagram[ncm_interface.recv_glue_ntb_datagram_ndx].wDatagramLength == 0) {
ERROR_OUT("(EE) SOMETHING WENT WRONG 2\n");
}
else {
uint16_t datagramIndex = ndp16_datagram[ncm_interface.recv_glue_ntb_datagram_ndx].wDatagramIndex;
uint16_t datagramLength = ndp16_datagram[ncm_interface.recv_glue_ntb_datagram_ndx].wDatagramLength;
DEBUG_OUT(" recv[%d] - %d %d\n", ncm_interface.recv_glue_ntb_datagram_ndx, datagramIndex, datagramLength);
if (tud_network_recv_cb(ncm_interface.recv_glue_ntb->data + datagramIndex, datagramLength)) {
//
// send datagram successfully to glue logic
//
DEBUG_OUT(" OK\n");
datagramIndex = ndp16_datagram[ncm_interface.recv_glue_ntb_datagram_ndx + 1].wDatagramIndex;
datagramLength = ndp16_datagram[ncm_interface.recv_glue_ntb_datagram_ndx + 1].wDatagramLength;
if (datagramIndex != 0 && datagramLength != 0) {
// -> next datagram
++ncm_interface.recv_glue_ntb_datagram_ndx;
}
else {
// end of datagrams reached
recv_put_ntb_into_free_list(ncm_interface.recv_glue_ntb);
ncm_interface.recv_glue_ntb = NULL;
}
}
}
}
} // recv_transfer_datagram_to_glue_logic
//-----------------------------------------------------------------------------
//
// all the tud_network_*() stuff (glue logic -> driver)
//
bool tud_network_can_xmit(uint16_t size)
/**
* Check if the glue logic is allowed to call tud_network_xmit().
* This function also fetches a next buffer if required, so that tud_network_xmit() is ready for copy
* and transmission operation.
*/
{
DEBUG_OUT("tud_network_can_xmit(%d)\n", size);
TU_ASSERT(size <= CFG_TUD_NCM_OUT_NTB_MAX_SIZE - (sizeof(nth16_t) + sizeof(ndp16_t) + 2*sizeof(ndp16_datagram_t)), false);
if (xmit_requested_datagram_fits_into_current_ntb(size) || xmit_setup_next_glue_ntb()) {
// -> everything is fine
return true;
}
xmit_start_if_possible(ncm_interface.rhport);
ERROR_OUT("(II) tud_network_can_xmit: request blocked\n"); // could happen if all xmit buffers are full (but should happen rarely)
return false;
} // tud_network_can_xmit
void tud_network_xmit(void *ref, uint16_t arg)
/**
* Put a datagram into a waiting NTB.
* If currently no transmission is started, then initiate transmission.
*/
{
DEBUG_OUT("tud_network_xmit(%p, %d)\n", ref, arg);
if (ncm_interface.xmit_glue_ntb == NULL) {
ERROR_OUT("(EE) tud_network_xmit: no buffer\n"); // must not happen (really)
return;
}
xmit_ntb_t *ntb = ncm_interface.xmit_glue_ntb;
// copy new datagram to the end of the current NTB
uint16_t size = tud_network_xmit_cb(ntb->data + ntb->nth.wBlockLength, ref, arg);
// correct NTB internals
ntb->ndp_datagram[ncm_interface.xmit_glue_ntb_datagram_ndx].wDatagramIndex = ntb->nth.wBlockLength;
ntb->ndp_datagram[ncm_interface.xmit_glue_ntb_datagram_ndx].wDatagramLength = size;
ncm_interface.xmit_glue_ntb_datagram_ndx += 1;
ntb->nth.wBlockLength += size + XMIT_ALIGN_OFFSET(size);
if (ntb->nth.wBlockLength > CFG_TUD_NCM_OUT_NTB_MAX_SIZE) {
ERROR_OUT("(II) tud_network_xmit: buffer overflow\n"); // must not happen (really)
return;
}
xmit_start_if_possible(ncm_interface.rhport);
} // tud_network_xmit
void tud_network_recv_renew(void)
/**
* Keep the receive logic busy and transfer pending packets to the glue logic.
*/
{
DEBUG_OUT("tud_network_recv_renew()\n");
recv_transfer_datagram_to_glue_logic();
recv_try_to_start_new_reception(ncm_interface.rhport);
} // tud_network_recv_renew
void tud_network_recv_renew_r(uint8_t rhport)
/**
* Same as tud_network_recv_renew() but knows \a rhport
*/
{
DEBUG_OUT("tud_network_recv_renew_r(%d)\n", rhport);
ncm_interface.rhport = rhport;
tud_network_recv_renew();
} // tud_network_recv_renew
//-----------------------------------------------------------------------------
//
// all the netd_*() stuff (interface TinyUSB -> driver)
//
void netd_init(void)
/**
* Initialize the driver data structures.
* Might be called several times.
*/
{
DEBUG_OUT("netd_init()\n");
memset( &ncm_interface, 0, sizeof(ncm_interface));
for (int i = 0; i < XMIT_NTB_N; ++i) {
ncm_interface.xmit_free_ntb[i] = ncm_interface.xmit_ntb + i;
}
for (int i = 0; i < RECV_NTB_N; ++i) {
ncm_interface.recv_free_ntb[i] = ncm_interface.recv_ntb + i;
}
} // netd_init
void netd_reset(uint8_t rhport)
/**
* Resets the port.
* In this driver this is the same as netd_init()
*/
{
DEBUG_OUT("netd_reset(%d)\n", rhport);
netd_init();
} // netd_reset
uint16_t netd_open(uint8_t rhport, tusb_desc_interface_t const *itf_desc, uint16_t max_len)
/**
* Open the USB interface.
* - parse the USB descriptor \a TUD_CDC_NCM_DESCRIPTOR for itfnum and endpoints
* - a specific order of elements in the descriptor is tested.
*
* \note
* Actually all of the information could be read directly from \a itf_desc, because the
* structure and the values are well known. But we do it this way.
*
* \post
* - \a itf_num set
* - \a ep_notif, \a ep_in and \a ep_out are set
* - USB interface is open
*/
{
DEBUG_OUT("netd_open(%d,%p,%d)\n", rhport, itf_desc, max_len);
TU_ASSERT(ncm_interface.ep_notif == 0, 0); // assure that the interface is only opened once
ncm_interface.itf_num = itf_desc->bInterfaceNumber; // management interface
//
// skip the two first entries and the following TUSB_DESC_CS_INTERFACE entries
//
uint16_t drv_len = sizeof(tusb_desc_interface_t);
uint8_t const *p_desc = tu_desc_next(itf_desc);
while (tu_desc_type(p_desc) == TUSB_DESC_CS_INTERFACE && drv_len <= max_len) {
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
//
// get notification endpoint
//
TU_ASSERT(tu_desc_type(p_desc) == TUSB_DESC_ENDPOINT, 0);
TU_ASSERT(usbd_edpt_open(rhport, (tusb_desc_endpoint_t const* ) p_desc), 0);
ncm_interface.ep_notif = ((tusb_desc_endpoint_t const*) p_desc)->bEndpointAddress;
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
//
// skip the following TUSB_DESC_INTERFACE entries (which must be TUSB_CLASS_CDC_DATA)
//
while (tu_desc_type(p_desc) == TUSB_DESC_INTERFACE && drv_len <= max_len) {
tusb_desc_interface_t const *data_itf_desc = (tusb_desc_interface_t const*)p_desc;
TU_ASSERT(data_itf_desc->bInterfaceClass == TUSB_CLASS_CDC_DATA, 0);
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
//
// a TUSB_DESC_ENDPOINT (actually two) must follow, open these endpoints
//
TU_ASSERT(tu_desc_type(p_desc) == TUSB_DESC_ENDPOINT, 0);
TU_ASSERT(usbd_open_edpt_pair(rhport, p_desc, 2, TUSB_XFER_BULK, &ncm_interface.ep_out, &ncm_interface.ep_in));
drv_len += 2 * sizeof(tusb_desc_endpoint_t);
return drv_len;
} // netd_open
bool netd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)
/**
* Handle TinyUSB requests to process transfer events.
*/
{
DEBUG_OUT("netd_xfer_cb(%d,%d,%d,%u)\n", rhport, ep_addr, result, (unsigned)xferred_bytes);
if (ep_addr == ncm_interface.ep_out) {
//
// new NTB received
// - make the NTB valid
// - if ready transfer datagrams to the glue logic for further processing
// - if there is a free receive buffer, initiate reception
//
DEBUG_OUT(" EP_OUT %d %d %d %u\n", rhport, ep_addr, result, (unsigned)xferred_bytes);
if ( !recv_validate_datagram( ncm_interface.recv_tinyusb_ntb, xferred_bytes)) {
// verification failed: ignore NTB and return it to free
ERROR_OUT("(EE) VALIDATION FAILED. WHAT CAN WE DO IN THIS CASE?\n");
}
else {
// packet ok -> put it into ready list
recv_put_ntb_into_ready_list(ncm_interface.recv_tinyusb_ntb);
}
ncm_interface.recv_tinyusb_ntb = NULL;
tud_network_recv_renew_r(rhport);
}
else if (ep_addr == ncm_interface.ep_in) {
//
// transmission of an NTB finished
// - free the transmitted NTB buffer
// - insert ZLPs when necessary
// - if there is another transmit NTB waiting, try to start transmission
//
DEBUG_OUT(" EP_IN %d %u\n", ncm_interface.itf_data_alt, (unsigned)xferred_bytes);
xmit_put_ntb_into_free_list(ncm_interface.xmit_tinyusb_ntb);
ncm_interface.xmit_tinyusb_ntb = NULL;
if ( !xmit_insert_required_zlp(rhport, xferred_bytes)) {
xmit_start_if_possible(rhport);
}
}
else if (ep_addr == ncm_interface.ep_notif) {
//
// next transfer on notification channel
//
DEBUG_OUT(" EP_NOTIF\n");
notification_xmit(rhport, true);
}
return true;
} // netd_xfer_cb
bool netd_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t const *request)
/**
* Respond to TinyUSB control requests.
* At startup transmission of notification packets are done here.
*/
{
DEBUG_OUT("netd_control_xfer_cb(%d, %d, %p)\n", rhport, stage, request);
if (stage != CONTROL_STAGE_SETUP) {
return true;
}
switch (request->bmRequestType_bit.type) {
case TUSB_REQ_TYPE_STANDARD:
switch (request->bRequest) {
case TUSB_REQ_GET_INTERFACE: {
TU_VERIFY(ncm_interface.itf_num + 1 == request->wIndex, false);
DEBUG_OUT(" TUSB_REQ_GET_INTERFACE - %d\n", ncm_interface.itf_data_alt);
tud_control_xfer(rhport, request, &ncm_interface.itf_data_alt, 1);
}
break;
case TUSB_REQ_SET_INTERFACE: {
TU_VERIFY(ncm_interface.itf_num + 1 == request->wIndex && request->wValue < 2, false);
ncm_interface.itf_data_alt = request->wValue;
DEBUG_OUT(" TUSB_REQ_SET_INTERFACE - %d %d %d\n", ncm_interface.itf_data_alt, request->wIndex, ncm_interface.itf_num);
if (ncm_interface.itf_data_alt == 1) {
tud_network_recv_renew_r(rhport);
notification_xmit(rhport, false);
}
tud_control_status(rhport, request);
}
break;
// unsupported request
default:
return false;
}
break;
case TUSB_REQ_TYPE_CLASS:
TU_VERIFY(ncm_interface.itf_num == request->wIndex, false);
DEBUG_OUT(" TUSB_REQ_TYPE_CLASS: %d\n", request->bRequest);
if (request->bRequest == NCM_GET_NTB_PARAMETERS) {
// transfer NTB parameters to host.
// TODO can one assume, that tud_control_xfer() succeeds?
DEBUG_OUT(" NCM_GET_NTB_PARAMETERS\n");
tud_control_xfer(rhport, request, (void*) (uintptr_t) &ntb_parameters, sizeof(ntb_parameters));
}
break;
// unsupported request
default:
return false ;
}
return true;
} // netd_control_xfer_cb
#endif // ECLIPSE_GUI || ( CFG_TUD_ENABLED && CFG_TUD_NCM )