1374 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1374 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**************************************************************************//**
 | |
|  * @file     cmsis_gcc.h
 | |
|  * @brief    CMSIS Cortex-M Core Function/Instruction Header File
 | |
|  * @version  V4.30
 | |
|  * @date     20. October 2015
 | |
|  ******************************************************************************/
 | |
| /* Copyright (c) 2009 - 2015 ARM LIMITED
 | |
| 
 | |
|    All rights reserved.
 | |
|    Redistribution and use in source and binary forms, with or without
 | |
|    modification, are permitted provided that the following conditions are met:
 | |
|    - Redistributions of source code must retain the above copyright
 | |
|      notice, this list of conditions and the following disclaimer.
 | |
|    - Redistributions in binary form must reproduce the above copyright
 | |
|      notice, this list of conditions and the following disclaimer in the
 | |
|      documentation and/or other materials provided with the distribution.
 | |
|    - Neither the name of ARM nor the names of its contributors may be used
 | |
|      to endorse or promote products derived from this software without
 | |
|      specific prior written permission.
 | |
|    *
 | |
|    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
|    AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|    IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|    ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
 | |
|    LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
|    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
|    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
|    INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
|    CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
|    ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
|    POSSIBILITY OF SUCH DAMAGE.
 | |
|    ---------------------------------------------------------------------------*/
 | |
| 
 | |
| 
 | |
| #ifndef __CMSIS_GCC_H
 | |
| #define __CMSIS_GCC_H
 | |
| 
 | |
| /* ignore some GCC warnings */
 | |
| #if defined ( __GNUC__ )
 | |
| #pragma GCC diagnostic push
 | |
| #pragma GCC diagnostic ignored "-Wsign-conversion"
 | |
| #pragma GCC diagnostic ignored "-Wconversion"
 | |
| #pragma GCC diagnostic ignored "-Wunused-parameter"
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* ###########################  Core Function Access  ########################### */
 | |
| /** \ingroup  CMSIS_Core_FunctionInterface
 | |
|     \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
 | |
|   @{
 | |
|  */
 | |
| 
 | |
| /**
 | |
|   \brief   Enable IRQ Interrupts
 | |
|   \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
 | |
|            Can only be executed in Privileged modes.
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_irq(void)
 | |
| {
 | |
|   __ASM volatile ("cpsie i" : : : "memory");
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Disable IRQ Interrupts
 | |
|   \details Disables IRQ interrupts by setting the I-bit in the CPSR.
 | |
|   Can only be executed in Privileged modes.
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_irq(void)
 | |
| {
 | |
|   __ASM volatile ("cpsid i" : : : "memory");
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Get Control Register
 | |
|   \details Returns the content of the Control Register.
 | |
|   \return               Control Register value
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CONTROL(void)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("MRS %0, control" : "=r" (result) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Set Control Register
 | |
|   \details Writes the given value to the Control Register.
 | |
|   \param [in]    control  Control Register value to set
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CONTROL(uint32_t control)
 | |
| {
 | |
|   __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Get IPSR Register
 | |
|   \details Returns the content of the IPSR Register.
 | |
|   \return               IPSR Register value
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_IPSR(void)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Get APSR Register
 | |
|   \details Returns the content of the APSR Register.
 | |
|   \return               APSR Register value
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_APSR(void)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("MRS %0, apsr" : "=r" (result) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Get xPSR Register
 | |
|   \details Returns the content of the xPSR Register.
 | |
| 
 | |
|     \return               xPSR Register value
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_xPSR(void)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Get Process Stack Pointer
 | |
|   \details Returns the current value of the Process Stack Pointer (PSP).
 | |
|   \return               PSP Register value
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PSP(void)
 | |
| {
 | |
|   register uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("MRS %0, psp\n"  : "=r" (result) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Set Process Stack Pointer
 | |
|   \details Assigns the given value to the Process Stack Pointer (PSP).
 | |
|   \param [in]    topOfProcStack  Process Stack Pointer value to set
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
 | |
| {
 | |
|   __ASM volatile ("MSR psp, %0\n" : : "r" (topOfProcStack) : "sp");
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Get Main Stack Pointer
 | |
|   \details Returns the current value of the Main Stack Pointer (MSP).
 | |
|   \return               MSP Register value
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_MSP(void)
 | |
| {
 | |
|   register uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("MRS %0, msp\n" : "=r" (result) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Set Main Stack Pointer
 | |
|   \details Assigns the given value to the Main Stack Pointer (MSP).
 | |
| 
 | |
|     \param [in]    topOfMainStack  Main Stack Pointer value to set
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
 | |
| {
 | |
|   __ASM volatile ("MSR msp, %0\n" : : "r" (topOfMainStack) : "sp");
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Get Priority Mask
 | |
|   \details Returns the current state of the priority mask bit from the Priority Mask Register.
 | |
|   \return               Priority Mask value
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PRIMASK(void)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("MRS %0, primask" : "=r" (result) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Set Priority Mask
 | |
|   \details Assigns the given value to the Priority Mask Register.
 | |
|   \param [in]    priMask  Priority Mask
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
 | |
| {
 | |
|   __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
 | |
| }
 | |
| 
 | |
| 
 | |
| #if       (__CORTEX_M >= 0x03U)
 | |
| 
 | |
| /**
 | |
|   \brief   Enable FIQ
 | |
|   \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
 | |
|            Can only be executed in Privileged modes.
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_fault_irq(void)
 | |
| {
 | |
|   __ASM volatile ("cpsie f" : : : "memory");
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Disable FIQ
 | |
|   \details Disables FIQ interrupts by setting the F-bit in the CPSR.
 | |
|            Can only be executed in Privileged modes.
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_fault_irq(void)
 | |
| {
 | |
|   __ASM volatile ("cpsid f" : : : "memory");
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Get Base Priority
 | |
|   \details Returns the current value of the Base Priority register.
 | |
|   \return               Base Priority register value
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_BASEPRI(void)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("MRS %0, basepri" : "=r" (result) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Set Base Priority
 | |
|   \details Assigns the given value to the Base Priority register.
 | |
|   \param [in]    basePri  Base Priority value to set
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI(uint32_t value)
 | |
| {
 | |
|   __ASM volatile ("MSR basepri, %0" : : "r" (value) : "memory");
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Set Base Priority with condition
 | |
|   \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
 | |
|            or the new value increases the BASEPRI priority level.
 | |
|   \param [in]    basePri  Base Priority value to set
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI_MAX(uint32_t value)
 | |
| {
 | |
|   __ASM volatile ("MSR basepri_max, %0" : : "r" (value) : "memory");
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Get Fault Mask
 | |
|   \details Returns the current value of the Fault Mask register.
 | |
|   \return               Fault Mask register value
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FAULTMASK(void)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Set Fault Mask
 | |
|   \details Assigns the given value to the Fault Mask register.
 | |
|   \param [in]    faultMask  Fault Mask value to set
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
 | |
| {
 | |
|   __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
 | |
| }
 | |
| 
 | |
| #endif /* (__CORTEX_M >= 0x03U) */
 | |
| 
 | |
| 
 | |
| #if       (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U)
 | |
| 
 | |
| /**
 | |
|   \brief   Get FPSCR
 | |
|   \details Returns the current value of the Floating Point Status/Control register.
 | |
|   \return               Floating Point Status/Control register value
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPSCR(void)
 | |
| {
 | |
| #if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
 | |
|   uint32_t result;
 | |
| 
 | |
|   /* Empty asm statement works as a scheduling barrier */
 | |
|   __ASM volatile ("");
 | |
|   __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
 | |
|   __ASM volatile ("");
 | |
|   return(result);
 | |
| #else
 | |
|    return(0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Set FPSCR
 | |
|   \details Assigns the given value to the Floating Point Status/Control register.
 | |
|   \param [in]    fpscr  Floating Point Status/Control value to set
 | |
|  */
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
 | |
| {
 | |
| #if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
 | |
|   /* Empty asm statement works as a scheduling barrier */
 | |
|   __ASM volatile ("");
 | |
|   __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc");
 | |
|   __ASM volatile ("");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif /* (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U) */
 | |
| 
 | |
| 
 | |
| 
 | |
| /*@} end of CMSIS_Core_RegAccFunctions */
 | |
| 
 | |
| 
 | |
| /* ##########################  Core Instruction Access  ######################### */
 | |
| /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
 | |
|   Access to dedicated instructions
 | |
|   @{
 | |
| */
 | |
| 
 | |
| /* Define macros for porting to both thumb1 and thumb2.
 | |
|  * For thumb1, use low register (r0-r7), specified by constraint "l"
 | |
|  * Otherwise, use general registers, specified by constraint "r" */
 | |
| #if defined (__thumb__) && !defined (__thumb2__)
 | |
| #define __CMSIS_GCC_OUT_REG(r) "=l" (r)
 | |
| #define __CMSIS_GCC_USE_REG(r) "l" (r)
 | |
| #else
 | |
| #define __CMSIS_GCC_OUT_REG(r) "=r" (r)
 | |
| #define __CMSIS_GCC_USE_REG(r) "r" (r)
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|   \brief   No Operation
 | |
|   \details No Operation does nothing. This instruction can be used for code alignment purposes.
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE void __NOP(void)
 | |
| {
 | |
|   __ASM volatile ("nop");
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Wait For Interrupt
 | |
|   \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE void __WFI(void)
 | |
| {
 | |
|   __ASM volatile ("wfi");
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Wait For Event
 | |
|   \details Wait For Event is a hint instruction that permits the processor to enter
 | |
|     a low-power state until one of a number of events occurs.
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE void __WFE(void)
 | |
| {
 | |
|   __ASM volatile ("wfe");
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Send Event
 | |
|   \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE void __SEV(void)
 | |
| {
 | |
|   __ASM volatile ("sev");
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Instruction Synchronization Barrier
 | |
|   \details Instruction Synchronization Barrier flushes the pipeline in the processor,
 | |
|            so that all instructions following the ISB are fetched from cache or memory,
 | |
|            after the instruction has been completed.
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE void __ISB(void)
 | |
| {
 | |
|   __ASM volatile ("isb 0xF":::"memory");
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Data Synchronization Barrier
 | |
|   \details Acts as a special kind of Data Memory Barrier.
 | |
|            It completes when all explicit memory accesses before this instruction complete.
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE void __DSB(void)
 | |
| {
 | |
|   __ASM volatile ("dsb 0xF":::"memory");
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Data Memory Barrier
 | |
|   \details Ensures the apparent order of the explicit memory operations before
 | |
|            and after the instruction, without ensuring their completion.
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE void __DMB(void)
 | |
| {
 | |
|   __ASM volatile ("dmb 0xF":::"memory");
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Reverse byte order (32 bit)
 | |
|   \details Reverses the byte order in integer value.
 | |
|   \param [in]    value  Value to reverse
 | |
|   \return               Reversed value
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE uint32_t __REV(uint32_t value)
 | |
| {
 | |
| #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
 | |
|   return __builtin_bswap32(value);
 | |
| #else
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
 | |
|   return(result);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Reverse byte order (16 bit)
 | |
|   \details Reverses the byte order in two unsigned short values.
 | |
|   \param [in]    value  Value to reverse
 | |
|   \return               Reversed value
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE uint32_t __REV16(uint32_t value)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Reverse byte order in signed short value
 | |
|   \details Reverses the byte order in a signed short value with sign extension to integer.
 | |
|   \param [in]    value  Value to reverse
 | |
|   \return               Reversed value
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE int32_t __REVSH(int32_t value)
 | |
| {
 | |
| #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
 | |
|   return (short)__builtin_bswap16(value);
 | |
| #else
 | |
|   int32_t result;
 | |
| 
 | |
|   __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
 | |
|   return(result);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Rotate Right in unsigned value (32 bit)
 | |
|   \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
 | |
|   \param [in]    value  Value to rotate
 | |
|   \param [in]    value  Number of Bits to rotate
 | |
|   \return               Rotated value
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   return (op1 >> op2) | (op1 << (32U - op2));
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Breakpoint
 | |
|   \details Causes the processor to enter Debug state.
 | |
|            Debug tools can use this to investigate system state when the instruction at a particular address is reached.
 | |
|   \param [in]    value  is ignored by the processor.
 | |
|                  If required, a debugger can use it to store additional information about the breakpoint.
 | |
|  */
 | |
| #define __BKPT(value)                       __ASM volatile ("bkpt "#value)
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Reverse bit order of value
 | |
|   \details Reverses the bit order of the given value.
 | |
|   \param [in]    value  Value to reverse
 | |
|   \return               Reversed value
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
| #if       (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U)
 | |
|    __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
 | |
| #else
 | |
|   int32_t s = 4 /*sizeof(v)*/ * 8 - 1; /* extra shift needed at end */
 | |
| 
 | |
|   result = value;                      /* r will be reversed bits of v; first get LSB of v */
 | |
|   for (value >>= 1U; value; value >>= 1U)
 | |
|   {
 | |
|     result <<= 1U;
 | |
|     result |= value & 1U;
 | |
|     s--;
 | |
|   }
 | |
|   result <<= s;                        /* shift when v's highest bits are zero */
 | |
| #endif
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Count leading zeros
 | |
|   \details Counts the number of leading zeros of a data value.
 | |
|   \param [in]  value  Value to count the leading zeros
 | |
|   \return             number of leading zeros in value
 | |
|  */
 | |
| #define __CLZ             __builtin_clz
 | |
| 
 | |
| 
 | |
| #if       (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U)
 | |
| 
 | |
| /**
 | |
|   \brief   LDR Exclusive (8 bit)
 | |
|   \details Executes a exclusive LDR instruction for 8 bit value.
 | |
|   \param [in]    ptr  Pointer to data
 | |
|   \return             value of type uint8_t at (*ptr)
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr)
 | |
| {
 | |
|     uint32_t result;
 | |
| 
 | |
| #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
 | |
|    __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
 | |
| #else
 | |
|     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
 | |
|        accepted by assembler. So has to use following less efficient pattern.
 | |
|     */
 | |
|    __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
 | |
| #endif
 | |
|    return ((uint8_t) result);    /* Add explicit type cast here */
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   LDR Exclusive (16 bit)
 | |
|   \details Executes a exclusive LDR instruction for 16 bit values.
 | |
|   \param [in]    ptr  Pointer to data
 | |
|   \return        value of type uint16_t at (*ptr)
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr)
 | |
| {
 | |
|     uint32_t result;
 | |
| 
 | |
| #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
 | |
|    __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
 | |
| #else
 | |
|     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
 | |
|        accepted by assembler. So has to use following less efficient pattern.
 | |
|     */
 | |
|    __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
 | |
| #endif
 | |
|    return ((uint16_t) result);    /* Add explicit type cast here */
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   LDR Exclusive (32 bit)
 | |
|   \details Executes a exclusive LDR instruction for 32 bit values.
 | |
|   \param [in]    ptr  Pointer to data
 | |
|   \return        value of type uint32_t at (*ptr)
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr)
 | |
| {
 | |
|     uint32_t result;
 | |
| 
 | |
|    __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
 | |
|    return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   STR Exclusive (8 bit)
 | |
|   \details Executes a exclusive STR instruction for 8 bit values.
 | |
|   \param [in]  value  Value to store
 | |
|   \param [in]    ptr  Pointer to location
 | |
|   \return          0  Function succeeded
 | |
|   \return          1  Function failed
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
 | |
| {
 | |
|    uint32_t result;
 | |
| 
 | |
|    __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
 | |
|    return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   STR Exclusive (16 bit)
 | |
|   \details Executes a exclusive STR instruction for 16 bit values.
 | |
|   \param [in]  value  Value to store
 | |
|   \param [in]    ptr  Pointer to location
 | |
|   \return          0  Function succeeded
 | |
|   \return          1  Function failed
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
 | |
| {
 | |
|    uint32_t result;
 | |
| 
 | |
|    __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
 | |
|    return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   STR Exclusive (32 bit)
 | |
|   \details Executes a exclusive STR instruction for 32 bit values.
 | |
|   \param [in]  value  Value to store
 | |
|   \param [in]    ptr  Pointer to location
 | |
|   \return          0  Function succeeded
 | |
|   \return          1  Function failed
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
 | |
| {
 | |
|    uint32_t result;
 | |
| 
 | |
|    __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
 | |
|    return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Remove the exclusive lock
 | |
|   \details Removes the exclusive lock which is created by LDREX.
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE void __CLREX(void)
 | |
| {
 | |
|   __ASM volatile ("clrex" ::: "memory");
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Signed Saturate
 | |
|   \details Saturates a signed value.
 | |
|   \param [in]  value  Value to be saturated
 | |
|   \param [in]    sat  Bit position to saturate to (1..32)
 | |
|   \return             Saturated value
 | |
|  */
 | |
| #define __SSAT(ARG1,ARG2) \
 | |
| ({                          \
 | |
|   uint32_t __RES, __ARG1 = (ARG1); \
 | |
|   __ASM ("ssat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
 | |
|   __RES; \
 | |
|  })
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Unsigned Saturate
 | |
|   \details Saturates an unsigned value.
 | |
|   \param [in]  value  Value to be saturated
 | |
|   \param [in]    sat  Bit position to saturate to (0..31)
 | |
|   \return             Saturated value
 | |
|  */
 | |
| #define __USAT(ARG1,ARG2) \
 | |
| ({                          \
 | |
|   uint32_t __RES, __ARG1 = (ARG1); \
 | |
|   __ASM ("usat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
 | |
|   __RES; \
 | |
|  })
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   Rotate Right with Extend (32 bit)
 | |
|   \details Moves each bit of a bitstring right by one bit.
 | |
|            The carry input is shifted in at the left end of the bitstring.
 | |
|   \param [in]    value  Value to rotate
 | |
|   \return               Rotated value
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE uint32_t __RRX(uint32_t value)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   LDRT Unprivileged (8 bit)
 | |
|   \details Executes a Unprivileged LDRT instruction for 8 bit value.
 | |
|   \param [in]    ptr  Pointer to data
 | |
|   \return             value of type uint8_t at (*ptr)
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE uint8_t __LDRBT(volatile uint8_t *addr)
 | |
| {
 | |
|     uint32_t result;
 | |
| 
 | |
| #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
 | |
|    __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*addr) );
 | |
| #else
 | |
|     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
 | |
|        accepted by assembler. So has to use following less efficient pattern.
 | |
|     */
 | |
|    __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
 | |
| #endif
 | |
|    return ((uint8_t) result);    /* Add explicit type cast here */
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   LDRT Unprivileged (16 bit)
 | |
|   \details Executes a Unprivileged LDRT instruction for 16 bit values.
 | |
|   \param [in]    ptr  Pointer to data
 | |
|   \return        value of type uint16_t at (*ptr)
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE uint16_t __LDRHT(volatile uint16_t *addr)
 | |
| {
 | |
|     uint32_t result;
 | |
| 
 | |
| #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
 | |
|    __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*addr) );
 | |
| #else
 | |
|     /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
 | |
|        accepted by assembler. So has to use following less efficient pattern.
 | |
|     */
 | |
|    __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
 | |
| #endif
 | |
|    return ((uint16_t) result);    /* Add explicit type cast here */
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   LDRT Unprivileged (32 bit)
 | |
|   \details Executes a Unprivileged LDRT instruction for 32 bit values.
 | |
|   \param [in]    ptr  Pointer to data
 | |
|   \return        value of type uint32_t at (*ptr)
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE uint32_t __LDRT(volatile uint32_t *addr)
 | |
| {
 | |
|     uint32_t result;
 | |
| 
 | |
|    __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*addr) );
 | |
|    return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   STRT Unprivileged (8 bit)
 | |
|   \details Executes a Unprivileged STRT instruction for 8 bit values.
 | |
|   \param [in]  value  Value to store
 | |
|   \param [in]    ptr  Pointer to location
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE void __STRBT(uint8_t value, volatile uint8_t *addr)
 | |
| {
 | |
|    __ASM volatile ("strbt %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) );
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   STRT Unprivileged (16 bit)
 | |
|   \details Executes a Unprivileged STRT instruction for 16 bit values.
 | |
|   \param [in]  value  Value to store
 | |
|   \param [in]    ptr  Pointer to location
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE void __STRHT(uint16_t value, volatile uint16_t *addr)
 | |
| {
 | |
|    __ASM volatile ("strht %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) );
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   \brief   STRT Unprivileged (32 bit)
 | |
|   \details Executes a Unprivileged STRT instruction for 32 bit values.
 | |
|   \param [in]  value  Value to store
 | |
|   \param [in]    ptr  Pointer to location
 | |
|  */
 | |
| __attribute__((always_inline)) __STATIC_INLINE void __STRT(uint32_t value, volatile uint32_t *addr)
 | |
| {
 | |
|    __ASM volatile ("strt %1, %0" : "=Q" (*addr) : "r" (value) );
 | |
| }
 | |
| 
 | |
| #endif /* (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) */
 | |
| 
 | |
| /*@}*/ /* end of group CMSIS_Core_InstructionInterface */
 | |
| 
 | |
| 
 | |
| /* ###################  Compiler specific Intrinsics  ########################### */
 | |
| /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
 | |
|   Access to dedicated SIMD instructions
 | |
|   @{
 | |
| */
 | |
| 
 | |
| #if (__CORTEX_M >= 0x04U)  /* only for Cortex-M4 and above */
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| #define __SSAT16(ARG1,ARG2) \
 | |
| ({                          \
 | |
|   int32_t __RES, __ARG1 = (ARG1); \
 | |
|   __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
 | |
|   __RES; \
 | |
|  })
 | |
| 
 | |
| #define __USAT16(ARG1,ARG2) \
 | |
| ({                          \
 | |
|   uint32_t __RES, __ARG1 = (ARG1); \
 | |
|   __ASM ("usat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
 | |
|   __RES; \
 | |
|  })
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUAD  (uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
 | |
| {
 | |
|   union llreg_u{
 | |
|     uint32_t w32[2];
 | |
|     uint64_t w64;
 | |
|   } llr;
 | |
|   llr.w64 = acc;
 | |
| 
 | |
| #ifndef __ARMEB__   /* Little endian */
 | |
|   __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
 | |
| #else               /* Big endian */
 | |
|   __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
 | |
| #endif
 | |
| 
 | |
|   return(llr.w64);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
 | |
| {
 | |
|   union llreg_u{
 | |
|     uint32_t w32[2];
 | |
|     uint64_t w64;
 | |
|   } llr;
 | |
|   llr.w64 = acc;
 | |
| 
 | |
| #ifndef __ARMEB__   /* Little endian */
 | |
|   __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
 | |
| #else               /* Big endian */
 | |
|   __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
 | |
| #endif
 | |
| 
 | |
|   return(llr.w64);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSD  (uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
 | |
| {
 | |
|   union llreg_u{
 | |
|     uint32_t w32[2];
 | |
|     uint64_t w64;
 | |
|   } llr;
 | |
|   llr.w64 = acc;
 | |
| 
 | |
| #ifndef __ARMEB__   /* Little endian */
 | |
|   __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
 | |
| #else               /* Big endian */
 | |
|   __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
 | |
| #endif
 | |
| 
 | |
|   return(llr.w64);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
 | |
| {
 | |
|   union llreg_u{
 | |
|     uint32_t w32[2];
 | |
|     uint64_t w64;
 | |
|   } llr;
 | |
|   llr.w64 = acc;
 | |
| 
 | |
| #ifndef __ARMEB__   /* Little endian */
 | |
|   __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
 | |
| #else               /* Big endian */
 | |
|   __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
 | |
| #endif
 | |
| 
 | |
|   return(llr.w64);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SEL  (uint32_t op1, uint32_t op2)
 | |
| {
 | |
|   uint32_t result;
 | |
| 
 | |
|   __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE  int32_t __QADD( int32_t op1,  int32_t op2)
 | |
| {
 | |
|   int32_t result;
 | |
| 
 | |
|   __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE  int32_t __QSUB( int32_t op1,  int32_t op2)
 | |
| {
 | |
|   int32_t result;
 | |
| 
 | |
|   __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
 | |
|   return(result);
 | |
| }
 | |
| 
 | |
| #define __PKHBT(ARG1,ARG2,ARG3) \
 | |
| ({                          \
 | |
|   uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
 | |
|   __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
 | |
|   __RES; \
 | |
|  })
 | |
| 
 | |
| #define __PKHTB(ARG1,ARG2,ARG3) \
 | |
| ({                          \
 | |
|   uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
 | |
|   if (ARG3 == 0) \
 | |
|     __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2)  ); \
 | |
|   else \
 | |
|     __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
 | |
|   __RES; \
 | |
|  })
 | |
| 
 | |
| __attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
 | |
| {
 | |
|  int32_t result;
 | |
| 
 | |
|  __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r"  (op1), "r" (op2), "r" (op3) );
 | |
|  return(result);
 | |
| }
 | |
| 
 | |
| #endif /* (__CORTEX_M >= 0x04) */
 | |
| /*@} end of group CMSIS_SIMD_intrinsics */
 | |
| 
 | |
| 
 | |
| #if defined ( __GNUC__ )
 | |
| #pragma GCC diagnostic pop
 | |
| #endif
 | |
| 
 | |
| #endif /* __CMSIS_GCC_H */
 | 
