Files
tinyUSB/src/host/usbh.c

1915 lines
65 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUH_ENABLED
#include "hcd.h"
#include "tusb.h"
#include "usbh_pvt.h"
#include "hub.h"
//--------------------------------------------------------------------+
// Configuration
//--------------------------------------------------------------------+
#ifndef CFG_TUH_TASK_QUEUE_SZ
#define CFG_TUH_TASK_QUEUE_SZ 16
#endif
#ifndef CFG_TUH_INTERFACE_MAX
#define CFG_TUH_INTERFACE_MAX 8
#endif
enum {
USBH_CONTROL_RETRY_MAX = 3,
};
//--------------------------------------------------------------------+
// Weak stubs: invoked if no strong implementation is available
//--------------------------------------------------------------------+
TU_ATTR_WEAK bool hcd_deinit(uint8_t rhport) {
(void) rhport; return false;
}
TU_ATTR_WEAK bool hcd_configure(uint8_t rhport, uint32_t cfg_id, const void* cfg_param) {
(void) rhport; (void) cfg_id; (void) cfg_param;
return false;
}
TU_ATTR_WEAK void tuh_enum_descriptor_device_cb(uint8_t daddr, const tusb_desc_device_t *desc_device) {
(void) daddr; (void) desc_device;
}
TU_ATTR_WEAK bool tuh_enum_descriptor_configuration_cb(uint8_t daddr, uint8_t cfg_index, const tusb_desc_configuration_t *desc_config) {
(void) daddr; (void) cfg_index; (void) desc_config;
return true;
}
TU_ATTR_WEAK void tuh_event_hook_cb(uint8_t rhport, uint32_t eventid, bool in_isr) {
(void) rhport; (void) eventid; (void) in_isr;
}
TU_ATTR_WEAK bool hcd_dcache_clean(const void* addr, uint32_t data_size) {
(void) addr; (void) data_size;
return false;
}
TU_ATTR_WEAK bool hcd_dcache_invalidate(const void* addr, uint32_t data_size) {
(void) addr; (void) data_size;
return false;
}
TU_ATTR_WEAK bool hcd_dcache_clean_invalidate(const void* addr, uint32_t data_size) {
(void) addr; (void) data_size;
return false;
}
//--------------------------------------------------------------------+
// Data Structure
//--------------------------------------------------------------------+
typedef struct {
tuh_bus_info_t bus_info;
// Device Descriptor
uint16_t bcdUSB;
uint8_t bDeviceClass;
uint8_t bDeviceSubClass;
uint8_t bDeviceProtocol;
uint8_t bMaxPacketSize0;
uint16_t idVendor;
uint16_t idProduct;
uint16_t bcdDevice;
uint8_t iManufacturer;
uint8_t iProduct;
uint8_t iSerialNumber;
uint8_t bNumConfigurations;
// Device State
struct TU_ATTR_PACKED {
volatile uint8_t connected : 1; // After 1st transfer
volatile uint8_t addressed : 1; // After SET_ADDR
volatile uint8_t configured : 1; // After SET_CONFIG and all drivers are configured
volatile uint8_t suspended : 1; // Bus suspended
// volatile uint8_t removing : 1; // Physically disconnected, waiting to be processed by usbh
};
// Endpoint & Interface
uint8_t itf2drv[CFG_TUH_INTERFACE_MAX]; // map interface number to driver (0xff is invalid)
uint8_t ep2drv[CFG_TUH_ENDPOINT_MAX][2]; // map endpoint to driver ( 0xff is invalid ), can use only 4-bit each
tu_edpt_state_t ep_status[CFG_TUH_ENDPOINT_MAX][2];
#if CFG_TUH_API_EDPT_XFER
// TODO array can be CFG_TUH_ENDPOINT_MAX-1
struct {
tuh_xfer_cb_t complete_cb;
uintptr_t user_data;
}ep_callback[CFG_TUH_ENDPOINT_MAX][2];
#endif
} usbh_device_t;
// sum of end device + hub
#define TOTAL_DEVICES (CFG_TUH_DEVICE_MAX + CFG_TUH_HUB)
// all devices excluding zero-address
// hub address start from CFG_TUH_DEVICE_MAX+1
// TODO: hub can has its own simpler struct to save memory
static usbh_device_t _usbh_devices[TOTAL_DEVICES];
// Mutex for claiming endpoint
#if OSAL_MUTEX_REQUIRED
static osal_mutex_def_t _usbh_mutexdef;
static osal_mutex_t _usbh_mutex;
#else
#define _usbh_mutex NULL
#endif
// Spinlock for interrupt handler
static OSAL_SPINLOCK_DEF(_usbh_spin, usbh_int_set);
// Event queue: usbh_int_set() is used as mutex in OS NONE config
OSAL_QUEUE_DEF(usbh_int_set, _usbh_qdef, CFG_TUH_TASK_QUEUE_SZ, hcd_event_t);
static osal_queue_t _usbh_q;
// Control transfers: since most controllers do not support multiple control transfers
// on multiple devices concurrently and control transfers are not used much except for
// enumeration, we will only execute control transfers one at a time.
typedef struct {
uint8_t* buffer;
tuh_xfer_cb_t complete_cb;
uintptr_t user_data;
volatile uint8_t stage;
uint8_t daddr;
volatile uint16_t actual_len;
uint8_t failed_count;
} usbh_ctrl_xfer_info_t;
typedef struct {
uint8_t controller_id; // controller ID
uint8_t enumerating_daddr; // device address of the device being enumerated
uint8_t attach_debouncing_bm; // bitmask for roothub port attach debouncing
tuh_bus_info_t dev0_bus; // bus info for dev0 in enumeration
usbh_ctrl_xfer_info_t ctrl_xfer_info; // control transfer
} usbh_data_t;
static usbh_data_t _usbh_data = {
.controller_id = TUSB_INDEX_INVALID_8,
};
typedef struct {
TUH_EPBUF_TYPE_DEF(tusb_control_request_t, request);
TUH_EPBUF_DEF(ctrl, CFG_TUH_ENUMERATION_BUFSIZE);
} usbh_epbuf_t;
CFG_TUH_MEM_SECTION static usbh_epbuf_t _usbh_epbuf;
//--------------------------------------------------------------------+
// Class Driver
//--------------------------------------------------------------------+
#if CFG_TUSB_DEBUG >= CFG_TUH_LOG_LEVEL
#define DRIVER_NAME(_name) _name
#else
#define DRIVER_NAME(_name) NULL
#endif
static usbh_class_driver_t const usbh_class_drivers[] = {
#if CFG_TUH_CDC
{
.name = DRIVER_NAME("CDC"),
.init = cdch_init,
.deinit = cdch_deinit,
.open = cdch_open,
.set_config = cdch_set_config,
.xfer_cb = cdch_xfer_cb,
.close = cdch_close
},
#endif
#if CFG_TUH_MSC
{
.name = DRIVER_NAME("MSC"),
.init = msch_init,
.deinit = msch_deinit,
.open = msch_open,
.set_config = msch_set_config,
.xfer_cb = msch_xfer_cb,
.close = msch_close
},
#endif
#if CFG_TUH_HID
{
.name = DRIVER_NAME("HID"),
.init = hidh_init,
.deinit = hidh_deinit,
.open = hidh_open,
.set_config = hidh_set_config,
.xfer_cb = hidh_xfer_cb,
.close = hidh_close
},
#endif
#if CFG_TUH_MIDI
{
.name = DRIVER_NAME("MIDI"),
.init = midih_init,
.deinit = midih_deinit,
.open = midih_open,
.set_config = midih_set_config,
.xfer_cb = midih_xfer_cb,
.close = midih_close
},
#endif
#if CFG_TUH_HUB
{
.name = DRIVER_NAME("HUB"),
.init = hub_init,
.deinit = hub_deinit,
.open = hub_open,
.set_config = hub_set_config,
.xfer_cb = hub_xfer_cb,
.close = hub_close
},
#endif
#if CFG_TUH_VENDOR
{
.name = DRIVER_NAME("VENDOR"),
.init = cush_init,
.deinit = cush_deinit,
.open = cush_open,
.set_config = cush_set_config,
.xfer_cb = cush_isr,
.close = cush_close
}
#endif
};
enum { BUILTIN_DRIVER_COUNT = TU_ARRAY_SIZE(usbh_class_drivers) };
// Additional class drivers implemented by application
static usbh_class_driver_t const * _app_driver = NULL;
static uint8_t _app_driver_count = 0;
#define TOTAL_DRIVER_COUNT (_app_driver_count + BUILTIN_DRIVER_COUNT)
static inline usbh_class_driver_t const *get_driver(uint8_t drv_id) {
usbh_class_driver_t const *driver = NULL;
if ( drv_id < _app_driver_count ) {
driver = &_app_driver[drv_id];
} else if ( drv_id < TOTAL_DRIVER_COUNT && BUILTIN_DRIVER_COUNT > 0) {
driver = &usbh_class_drivers[drv_id - _app_driver_count];
}
return driver;
}
//--------------------------------------------------------------------+
// Function Inline and Prototypes
//--------------------------------------------------------------------+
static bool enum_new_device(hcd_event_t* event);
static void process_removed_device(uint8_t rhport, uint8_t hub_addr, uint8_t hub_port);
static bool usbh_edpt_control_open(uint8_t dev_addr, uint8_t max_packet_size);
static bool usbh_control_xfer_cb (uint8_t daddr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
TU_ATTR_ALWAYS_INLINE static inline usbh_device_t* get_device(uint8_t dev_addr) {
TU_VERIFY(dev_addr > 0 && dev_addr <= TOTAL_DEVICES, NULL);
return &_usbh_devices[dev_addr-1];
}
TU_ATTR_ALWAYS_INLINE static inline bool is_hub_addr(uint8_t daddr) {
return (CFG_TUH_HUB > 0) && (daddr > CFG_TUH_DEVICE_MAX);
}
TU_ATTR_ALWAYS_INLINE static inline bool queue_event(hcd_event_t const * event, bool in_isr) {
TU_ASSERT(osal_queue_send(_usbh_q, event, in_isr));
tuh_event_hook_cb(event->rhport, event->event_id, in_isr);
return true;
}
TU_ATTR_ALWAYS_INLINE static inline void _control_set_xfer_stage(uint8_t stage) {
if (_usbh_data.ctrl_xfer_info.stage != stage) {
(void) osal_mutex_lock(_usbh_mutex, OSAL_TIMEOUT_WAIT_FOREVER);
_usbh_data.ctrl_xfer_info.stage = stage;
(void) osal_mutex_unlock(_usbh_mutex);
}
}
TU_ATTR_ALWAYS_INLINE static inline bool usbh_setup_send(uint8_t daddr, const uint8_t setup_packet[8]) {
const uint8_t rhport = usbh_get_rhport(daddr);
const bool ret = hcd_setup_send(rhport, daddr, setup_packet);
if (!ret) {
_control_set_xfer_stage(CONTROL_STAGE_IDLE);
}
return ret;
}
TU_ATTR_ALWAYS_INLINE static inline void usbh_device_close(uint8_t rhport, uint8_t daddr) {
hcd_device_close(rhport, daddr);
// abort any ongoing control transfer
if (daddr == _usbh_data.ctrl_xfer_info.daddr) {
_control_set_xfer_stage(CONTROL_STAGE_IDLE);
}
// invalidate if enumerating
if (daddr == _usbh_data.enumerating_daddr) {
_usbh_data.enumerating_daddr = TUSB_INDEX_INVALID_8;
}
}
//--------------------------------------------------------------------+
// Device API
//--------------------------------------------------------------------+
bool tuh_mounted(uint8_t dev_addr) {
usbh_device_t *dev = get_device(dev_addr);
TU_VERIFY(dev);
return dev->configured;
}
bool tuh_connected(uint8_t daddr) {
if (daddr == 0) {
return _usbh_data.enumerating_daddr == 0;
} else {
const usbh_device_t* dev = get_device(daddr);
return dev && dev->connected;
}
}
bool tuh_vid_pid_get(uint8_t dev_addr, uint16_t *vid, uint16_t *pid) {
*vid = *pid = 0;
usbh_device_t const *dev = get_device(dev_addr);
TU_VERIFY(dev && dev->addressed && dev->idVendor != 0);
*vid = dev->idVendor;
*pid = dev->idProduct;
return true;
}
bool tuh_descriptor_get_device_local(uint8_t daddr, tusb_desc_device_t* desc_device) {
usbh_device_t *dev = get_device(daddr);
TU_VERIFY(dev && desc_device);
desc_device->bLength = sizeof(tusb_desc_device_t);
desc_device->bDescriptorType = TUSB_DESC_DEVICE;
desc_device->bcdUSB = dev->bcdUSB;
desc_device->bDeviceClass = dev->bDeviceClass;
desc_device->bDeviceSubClass = dev->bDeviceSubClass;
desc_device->bDeviceProtocol = dev->bDeviceProtocol;
desc_device->bMaxPacketSize0 = dev->bMaxPacketSize0;
desc_device->idVendor = dev->idVendor;
desc_device->idProduct = dev->idProduct;
desc_device->bcdDevice = dev->bcdDevice;
desc_device->iManufacturer = dev->iManufacturer;
desc_device->iProduct = dev->iProduct;
desc_device->iSerialNumber = dev->iSerialNumber;
desc_device->bNumConfigurations = dev->bNumConfigurations;
return true;
}
tusb_speed_t tuh_speed_get(uint8_t daddr) {
tuh_bus_info_t bus_info;
tuh_bus_info_get(daddr, &bus_info);
return bus_info.speed;
}
bool tuh_rhport_is_active(uint8_t rhport) {
return _usbh_data.controller_id == rhport;
}
bool tuh_rhport_reset_bus(uint8_t rhport, bool active) {
TU_VERIFY(tuh_rhport_is_active(rhport));
if (active) {
hcd_port_reset(rhport);
} else {
hcd_port_reset_end(rhport);
}
return true;
}
//--------------------------------------------------------------------+
// PUBLIC API (Parameter Verification is required)
//--------------------------------------------------------------------+
bool tuh_configure(uint8_t rhport, uint32_t cfg_id, const void *cfg_param) {
return hcd_configure(rhport, cfg_id, cfg_param);
}
static void clear_device(usbh_device_t* dev) {
tu_memclr(dev, sizeof(usbh_device_t));
memset(dev->itf2drv, TUSB_INDEX_INVALID_8, sizeof(dev->itf2drv)); // invalid mapping
memset(dev->ep2drv , TUSB_INDEX_INVALID_8, sizeof(dev->ep2drv )); // invalid mapping
}
bool tuh_inited(void) {
return _usbh_data.controller_id != TUSB_INDEX_INVALID_8;
}
bool tuh_rhport_init(uint8_t rhport, const tusb_rhport_init_t* rh_init) {
if (tuh_rhport_is_active(rhport)) {
return true; // skip if already initialized
}
TU_LOG_USBH("USBH init on controller %u, speed = %s\r\n", rhport,
rh_init->speed == TUSB_SPEED_HIGH ? "High" : "Full");
// Init host stack if not already
if (!tuh_inited()) {
TU_LOG_INT_USBH(sizeof(usbh_data_t));
TU_LOG_INT_USBH(sizeof(usbh_device_t));
TU_LOG_INT_USBH(sizeof(hcd_event_t));
TU_LOG_INT_USBH(sizeof(tuh_xfer_t));
TU_LOG_INT_USBH(sizeof(tu_fifo_t));
TU_LOG_INT_USBH(sizeof(tu_edpt_stream_t));
osal_spin_init(&_usbh_spin);
// Event queue
_usbh_q = osal_queue_create(&_usbh_qdef);
TU_ASSERT(_usbh_q != NULL);
#if OSAL_MUTEX_REQUIRED
// Init mutex
_usbh_mutex = osal_mutex_create(&_usbh_mutexdef);
TU_ASSERT(_usbh_mutex);
#endif
// Get application driver if available
if (usbh_app_driver_get_cb) {
_app_driver = usbh_app_driver_get_cb(&_app_driver_count);
}
// Device
tu_memclr(_usbh_devices, sizeof(_usbh_devices));
tu_memclr(&_usbh_data, sizeof(_usbh_data));
_usbh_data.controller_id = TUSB_INDEX_INVALID_8;
_usbh_data.enumerating_daddr = TUSB_INDEX_INVALID_8;
for (uint8_t i = 0; i < TOTAL_DEVICES; i++) {
clear_device(&_usbh_devices[i]);
}
// Class drivers
for (uint8_t drv_id = 0; drv_id < TOTAL_DRIVER_COUNT; drv_id++) {
usbh_class_driver_t const* driver = get_driver(drv_id);
if (driver) {
TU_LOG_USBH("%s init\r\n", driver->name);
driver->init();
}
}
}
// Init host controller
_usbh_data.controller_id = rhport;
TU_ASSERT(hcd_init(rhport, rh_init));
hcd_int_enable(rhport);
return true;
}
bool tuh_deinit(uint8_t rhport) {
if (!tuh_rhport_is_active(rhport)) {
return true;
}
// deinit host controller
hcd_int_disable(rhport);
hcd_deinit(rhport);
_usbh_data.controller_id = TUSB_INDEX_INVALID_8;
// "unplug" all devices on this rhport (hub_addr = 0, hub_port = 0)
process_removed_device(rhport, 0, 0);
// deinit host stack if no controller is active
if (!tuh_inited()) {
// Class drivers
for (uint8_t drv_id = 0; drv_id < TOTAL_DRIVER_COUNT; drv_id++) {
usbh_class_driver_t const* driver = get_driver(drv_id);
if (driver && driver->deinit) {
TU_LOG_USBH("%s deinit\r\n", driver->name);
driver->deinit();
}
}
osal_queue_delete(_usbh_q);
_usbh_q = NULL;
#if OSAL_MUTEX_REQUIRED
// TODO make sure there is no task waiting on this mutex
osal_mutex_delete(_usbh_mutex);
_usbh_mutex = NULL;
#endif
}
return true;
}
bool tuh_task_event_ready(void) {
if (!tuh_inited()) {
return false; // Skip if stack is not initialized
}
return !osal_queue_empty(_usbh_q);
}
/* USB Host Driver task
* This top level thread manages all host controller event and delegates events to class-specific drivers.
* This should be called periodically within the mainloop or rtos thread.
*
@code
int main(void) {
application_init();
tusb_init(0, TUSB_ROLE_HOST);
while(1) { // the mainloop
application_code();
tuh_task(); // tinyusb host task
}
}
@endcode
*/
void tuh_task_ext(uint32_t timeout_ms, bool in_isr) {
(void) in_isr; // not implemented yet
// Skip if stack is not initialized
if (!tuh_inited()) {
return;
}
// Loop until there is no more events in the queue
while (1) {
hcd_event_t event;
if (!osal_queue_receive(_usbh_q, &event, timeout_ms)) { return; }
switch (event.event_id) {
case HCD_EVENT_DEVICE_ATTACH:
// due to the shared control buffer, we must fully complete enumerating one device first.
// TODO better to have an separated queue for newly attached devices
if (_usbh_data.enumerating_daddr == TUSB_INDEX_INVALID_8) {
// New device attached and we are ready
TU_LOG_USBH("[%u:] USBH Device Attach\r\n", event.rhport);
_usbh_data.enumerating_daddr = 0; // enumerate new device with address 0
enum_new_device(&event);
} else {
// currently enumerating another device
TU_LOG_USBH("[%u:] USBH Defer Attach until current enumeration complete\r\n", event.rhport);
const bool is_empty = osal_queue_empty(_usbh_q);
queue_event(&event, in_isr);
if (is_empty) {
return; // Exit if this is the only event in the queue, otherwise we loop forever
}
}
break;
case HCD_EVENT_DEVICE_REMOVE:
TU_LOG_USBH("[%u:%u:%u] USBH DEVICE REMOVED\r\n", event.rhport, event.connection.hub_addr, event.connection.hub_port);
if (_usbh_data.enumerating_daddr == 0 &&
event.rhport == _usbh_data.dev0_bus.rhport &&
event.connection.hub_addr == _usbh_data.dev0_bus.hub_addr &&
event.connection.hub_port == _usbh_data.dev0_bus.hub_port) {
// dev0 is unplugged while enumerating (not yet assigned an address)
usbh_device_close(_usbh_data.dev0_bus.rhport, 0);
} else {
process_removed_device(event.rhport, event.connection.hub_addr, event.connection.hub_port);
}
break;
case HCD_EVENT_XFER_COMPLETE: {
uint8_t const ep_addr = event.xfer_complete.ep_addr;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const ep_dir = (uint8_t) tu_edpt_dir(ep_addr);
TU_LOG_USBH("[:%u] on EP %02X with %u bytes: %s\r\n",
event.dev_addr, ep_addr, (unsigned int) event.xfer_complete.len, tu_str_xfer_result[event.xfer_complete.result]);
if (event.dev_addr == 0) {
// device 0 only has control endpoint
TU_ASSERT(epnum == 0,);
usbh_control_xfer_cb(event.dev_addr, ep_addr, (xfer_result_t) event.xfer_complete.result, event.xfer_complete.len);
} else {
usbh_device_t* dev = get_device(event.dev_addr);
TU_VERIFY(dev && dev->connected,);
dev->ep_status[epnum][ep_dir].busy = 0;
dev->ep_status[epnum][ep_dir].claimed = 0;
if (0 == epnum) {
usbh_control_xfer_cb(event.dev_addr, ep_addr, (xfer_result_t) event.xfer_complete.result, event.xfer_complete.len);
} else {
// Prefer application callback over built-in one if available. This occurs when tuh_edpt_xfer() is used
// with enabled driver e.g HID endpoint
#if CFG_TUH_API_EDPT_XFER
tuh_xfer_cb_t const complete_cb = dev->ep_callback[epnum][ep_dir].complete_cb;
if ( complete_cb ) {
// re-construct xfer info
tuh_xfer_t xfer = {
.daddr = event.dev_addr,
.ep_addr = ep_addr,
.result = event.xfer_complete.result,
.actual_len = event.xfer_complete.len,
.buflen = 0, // not available
.buffer = NULL, // not available
.complete_cb = complete_cb,
.user_data = dev->ep_callback[epnum][ep_dir].user_data
};
complete_cb(&xfer);
}else
#endif
{
uint8_t drv_id = dev->ep2drv[epnum][ep_dir];
usbh_class_driver_t const* driver = get_driver(drv_id);
if (driver) {
TU_LOG_USBH(" %s xfer callback\r\n", driver->name);
driver->xfer_cb(event.dev_addr, ep_addr, (xfer_result_t) event.xfer_complete.result,
event.xfer_complete.len);
} else {
// no driver/callback responsible for this transfer
TU_ASSERT(false,);
}
}
}
}
break;
}
case USBH_EVENT_FUNC_CALL:
if (event.func_call.func) event.func_call.func(event.func_call.param);
break;
default:
break;
}
#if CFG_TUSB_OS != OPT_OS_NONE && CFG_TUSB_OS != OPT_OS_PICO
// return if there is no more events, for application to run other background
if (osal_queue_empty(_usbh_q)) return;
#endif
}
}
//--------------------------------------------------------------------+
// Control transfer
//--------------------------------------------------------------------+
static void _control_blocking_complete_cb(tuh_xfer_t* xfer) {
// update result
*((xfer_result_t*) xfer->user_data) = xfer->result;
}
// TODO timeout_ms is not supported yet
bool tuh_control_xfer (tuh_xfer_t* xfer) {
TU_VERIFY(xfer->ep_addr == 0 && xfer->setup); // EP0 with setup packet
const uint8_t daddr = xfer->daddr;
TU_VERIFY(tuh_connected(daddr));
usbh_ctrl_xfer_info_t* ctrl_info = &_usbh_data.ctrl_xfer_info;
TU_VERIFY(ctrl_info->stage == CONTROL_STAGE_IDLE); // pre-check to help reducing mutex lock
(void) osal_mutex_lock(_usbh_mutex, OSAL_TIMEOUT_WAIT_FOREVER);
bool const is_idle = (ctrl_info->stage == CONTROL_STAGE_IDLE);
if (is_idle) {
ctrl_info->stage = CONTROL_STAGE_SETUP;
ctrl_info->daddr = daddr;
ctrl_info->actual_len = 0;
ctrl_info->failed_count = 0;
ctrl_info->buffer = xfer->buffer;
ctrl_info->complete_cb = xfer->complete_cb;
ctrl_info->user_data = xfer->user_data;
_usbh_epbuf.request = (*xfer->setup);
}
(void) osal_mutex_unlock(_usbh_mutex);
TU_VERIFY(is_idle);
TU_LOG_USBH("[%u:%u] %s: ", usbh_get_rhport(daddr), daddr,
(xfer->setup->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD && xfer->setup->bRequest <= TUSB_REQ_SYNCH_FRAME) ?
tu_str_std_request[xfer->setup->bRequest] : "Class Request");
TU_LOG_BUF_USBH(xfer->setup, 8);
if (xfer->complete_cb) {
TU_ASSERT(usbh_setup_send(daddr, (uint8_t const *) &_usbh_epbuf.request));
}else {
// blocking if complete callback is not provided
// change callback to internal blocking, and result as user argument
volatile xfer_result_t result = XFER_RESULT_INVALID;
// use user_data to point to xfer_result_t
ctrl_info->user_data = (uintptr_t) &result;
ctrl_info->complete_cb = _control_blocking_complete_cb;
TU_ASSERT(usbh_setup_send(daddr, (uint8_t const *) &_usbh_epbuf.request));
while (result == XFER_RESULT_INVALID) {
// Note: this can be called within an callback ie. part of tuh_task()
// therefore event with RTOS tuh_task() still need to be invoked
if (tuh_task_event_ready()) {
tuh_task();
}
// TODO probably some timeout to prevent hanged
}
// update transfer result, user_data is expected to point to xfer_result_t
if (xfer->user_data != 0) {
*((xfer_result_t*) xfer->user_data) = result;
}
xfer->result = result;
xfer->actual_len = ctrl_info->actual_len;
}
return true;
}
static void _control_xfer_complete(uint8_t daddr, xfer_result_t result) {
TU_LOG_USBH("\r\n");
usbh_ctrl_xfer_info_t* ctrl_info = &_usbh_data.ctrl_xfer_info;
// duplicate xfer since user can execute control transfer within callback
tusb_control_request_t const request = _usbh_epbuf.request;
tuh_xfer_t xfer_temp = {
.daddr = daddr,
.ep_addr = 0,
.result = result,
.setup = &request,
.actual_len = (uint32_t) ctrl_info->actual_len,
.buffer = ctrl_info->buffer,
.complete_cb = ctrl_info->complete_cb,
.user_data = ctrl_info->user_data
};
_control_set_xfer_stage(CONTROL_STAGE_IDLE);
if (xfer_temp.complete_cb) {
xfer_temp.complete_cb(&xfer_temp);
}
}
static bool usbh_control_xfer_cb (uint8_t daddr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes) {
(void) ep_addr;
const uint8_t rhport = usbh_get_rhport(daddr);
tusb_control_request_t const * request = &_usbh_epbuf.request;
usbh_ctrl_xfer_info_t* ctrl_info = &_usbh_data.ctrl_xfer_info;
switch (result) {
case XFER_RESULT_STALLED:
TU_LOG_USBH("[%u:%u] Control STALLED, xferred_bytes = %" PRIu32 "\r\n", rhport, daddr, xferred_bytes);
TU_LOG_BUF_USBH(request, 8);
_control_xfer_complete(daddr, result);
break;
case XFER_RESULT_FAILED:
if (tuh_connected(daddr) && ctrl_info->failed_count < USBH_CONTROL_RETRY_MAX) {
TU_LOG_USBH("[%u:%u] Control FAILED %u/%u, retrying\r\n", rhport, daddr, ctrl_info->failed_count+1, USBH_CONTROL_RETRY_MAX);
(void) osal_mutex_lock(_usbh_mutex, OSAL_TIMEOUT_WAIT_FOREVER);
ctrl_info->stage = CONTROL_STAGE_SETUP;
ctrl_info->failed_count++;
ctrl_info->actual_len = 0; // reset actual_len
(void) osal_mutex_unlock(_usbh_mutex);
TU_ASSERT(usbh_setup_send(daddr, (uint8_t const *) request));
} else {
TU_LOG_USBH("[%u:%u] Control FAILED, xferred_bytes = %" PRIu32 "\r\n", rhport, daddr, xferred_bytes);
TU_LOG_BUF_USBH(request, 8);
_control_xfer_complete(daddr, result);
}
break;
case XFER_RESULT_SUCCESS:
switch(ctrl_info->stage) {
case CONTROL_STAGE_SETUP:
if (request->wLength) {
// DATA stage: initial data toggle is always 1
_control_set_xfer_stage(CONTROL_STAGE_DATA);
const uint8_t ep_data = tu_edpt_addr(0, request->bmRequestType_bit.direction);
TU_ASSERT(hcd_edpt_xfer(rhport, daddr, ep_data, ctrl_info->buffer, request->wLength));
return true;
}
TU_ATTR_FALLTHROUGH;
case CONTROL_STAGE_DATA:
if (request->wLength) {
TU_LOG_USBH("[%u:%u] Control data:\r\n", rhport, daddr);
TU_LOG_MEM_USBH(ctrl_info->buffer, xferred_bytes, 2);
}
ctrl_info->actual_len = (uint16_t) xferred_bytes;
// ACK stage: toggle is always 1
_control_set_xfer_stage(CONTROL_STAGE_ACK);
const uint8_t ep_status = tu_edpt_addr(0, 1 - request->bmRequestType_bit.direction);
TU_ASSERT(hcd_edpt_xfer(rhport, daddr, ep_status, NULL, 0));
break;
case CONTROL_STAGE_ACK: {
// Abort all pending transfers if SET_CONFIGURATION request
// NOTE: should we force closing all non-control endpoints in the future?
if (request->bRequest == TUSB_REQ_SET_CONFIGURATION && request->bmRequestType == 0x00) {
for(uint8_t epnum=1; epnum<CFG_TUH_ENDPOINT_MAX; epnum++) {
for(uint8_t dir=0; dir<2; dir++) {
tuh_edpt_abort_xfer(daddr, tu_edpt_addr(epnum, dir));
}
}
}
_control_xfer_complete(daddr, result);
break;
}
default: return false; // unsupported stage
}
break;
default: return false; // unsupported result
}
return true;
}
//--------------------------------------------------------------------+
//
//--------------------------------------------------------------------+
bool tuh_edpt_xfer(tuh_xfer_t* xfer) {
uint8_t const daddr = xfer->daddr;
uint8_t const ep_addr = xfer->ep_addr;
TU_VERIFY(daddr && ep_addr);
TU_VERIFY(usbh_edpt_claim(daddr, ep_addr));
if (!usbh_edpt_xfer_with_callback(daddr, ep_addr, xfer->buffer, (uint16_t) xfer->buflen,
xfer->complete_cb, xfer->user_data)) {
usbh_edpt_release(daddr, ep_addr);
return false;
}
return true;
}
bool tuh_edpt_abort_xfer(uint8_t daddr, uint8_t ep_addr) {
TU_LOG_USBH("[%u] Aborted transfer on EP %02X\r\n", daddr, ep_addr);
const uint8_t epnum = tu_edpt_number(ep_addr);
const uint8_t dir = tu_edpt_dir(ep_addr);
if (epnum == 0) {
// Also include dev0 for aborting enumerating
const uint8_t rhport = usbh_get_rhport(daddr);
// control transfer: only 1 control at a time, check if we are aborting the current one
const usbh_ctrl_xfer_info_t* ctrl_info = &_usbh_data.ctrl_xfer_info;
TU_VERIFY(daddr == ctrl_info->daddr && ctrl_info->stage != CONTROL_STAGE_IDLE);
hcd_edpt_abort_xfer(rhport, daddr, ep_addr);
_control_set_xfer_stage(CONTROL_STAGE_IDLE); // reset control transfer state to idle
} else {
usbh_device_t* dev = get_device(daddr);
TU_VERIFY(dev);
TU_VERIFY(dev->ep_status[epnum][dir].busy); // non-control skip if not busy
// abort then mark as ready and release endpoint
hcd_edpt_abort_xfer(dev->bus_info.rhport, daddr, ep_addr);
dev->ep_status[epnum][dir].busy = false;
tu_edpt_release(&dev->ep_status[epnum][dir], _usbh_mutex);
}
return true;
}
//--------------------------------------------------------------------+
// USBH API For Class Driver
//--------------------------------------------------------------------+
uint8_t usbh_get_rhport(uint8_t daddr) {
tuh_bus_info_t bus_info;
tuh_bus_info_get(daddr, &bus_info);
return bus_info.rhport;
}
uint8_t *usbh_get_enum_buf(void) {
return _usbh_epbuf.ctrl;
}
void usbh_int_set(bool enabled) {
// TODO all host controller if multiple are used since they shared the same event queue
if (enabled) {
hcd_int_enable(_usbh_data.controller_id);
} else {
hcd_int_disable(_usbh_data.controller_id);
}
}
void usbh_spin_lock(bool in_isr) {
osal_spin_lock(&_usbh_spin, in_isr);
}
void usbh_spin_unlock(bool in_isr) {
osal_spin_unlock(&_usbh_spin, in_isr);
}
void usbh_defer_func(osal_task_func_t func, void *param, bool in_isr) {
hcd_event_t event = { 0 };
event.event_id = USBH_EVENT_FUNC_CALL;
event.func_call.func = func;
event.func_call.param = param;
queue_event(&event, in_isr);
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
// Claim an endpoint for transfer
bool usbh_edpt_claim(uint8_t dev_addr, uint8_t ep_addr) {
// Note: addr0 only use tuh_control_xfer
usbh_device_t* dev = get_device(dev_addr);
TU_ASSERT(dev && dev->connected);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
TU_VERIFY(tu_edpt_claim(&dev->ep_status[epnum][dir], _usbh_mutex));
TU_LOG_USBH("[%u] Claimed EP 0x%02x\r\n", dev_addr, ep_addr);
return true;
}
// Release an claimed endpoint due to failed transfer attempt
bool usbh_edpt_release(uint8_t dev_addr, uint8_t ep_addr) {
// Note: addr0 only use tuh_control_xfer
usbh_device_t* dev = get_device(dev_addr);
TU_VERIFY(dev && dev->connected);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
TU_VERIFY(tu_edpt_release(&dev->ep_status[epnum][dir], _usbh_mutex));
TU_LOG_USBH("[%u] Released EP 0x%02x\r\n", dev_addr, ep_addr);
return true;
}
// Submit an transfer
bool usbh_edpt_xfer_with_callback(uint8_t dev_addr, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
(void) complete_cb;
(void) user_data;
usbh_device_t* dev = get_device(dev_addr);
TU_VERIFY(dev);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
tu_edpt_state_t* ep_state = &dev->ep_status[epnum][dir];
TU_LOG_USBH(" Queue EP %02X with %u bytes ... \r\n", ep_addr, total_bytes);
// Attempt to transfer on a busy endpoint, sound like an race condition !
TU_ASSERT(ep_state->busy == 0);
// Set busy first since the actual transfer can be complete before hcd_edpt_xfer()
// could return and USBH task can preempt and clear the busy
ep_state->busy = 1;
#if CFG_TUH_API_EDPT_XFER
dev->ep_callback[epnum][dir].complete_cb = complete_cb;
dev->ep_callback[epnum][dir].user_data = user_data;
#endif
if (hcd_edpt_xfer(dev->bus_info.rhport, dev_addr, ep_addr, buffer, total_bytes)) {
TU_LOG_USBH("OK\r\n");
return true;
} else {
// HCD error, mark endpoint as ready to allow next transfer
ep_state->busy = 0;
ep_state->claimed = 0;
TU_LOG1("Failed\r\n");
// TU_BREAKPOINT();
return false;
}
}
static bool usbh_edpt_control_open(uint8_t dev_addr, uint8_t max_packet_size) {
TU_LOG_USBH("[%u:%u] Open EP0 with Size = %u\r\n", usbh_get_rhport(dev_addr), dev_addr, max_packet_size);
tusb_desc_endpoint_t ep0_desc = {
.bLength = sizeof(tusb_desc_endpoint_t),
.bDescriptorType = TUSB_DESC_ENDPOINT,
.bEndpointAddress = 0,
.bmAttributes = { .xfer = TUSB_XFER_CONTROL },
.wMaxPacketSize = max_packet_size,
.bInterval = 0
};
return hcd_edpt_open(usbh_get_rhport(dev_addr), dev_addr, &ep0_desc);
}
bool tuh_edpt_open(uint8_t dev_addr, tusb_desc_endpoint_t const* desc_ep) {
TU_ASSERT(tu_edpt_validate(desc_ep, tuh_speed_get(dev_addr), true));
return hcd_edpt_open(usbh_get_rhport(dev_addr), dev_addr, desc_ep);
}
bool tuh_edpt_close(uint8_t daddr, uint8_t ep_addr) {
TU_VERIFY(0 != tu_edpt_number(ep_addr)); // cannot close EP0
tuh_edpt_abort_xfer(daddr, ep_addr); // abort any pending transfer
return hcd_edpt_close(usbh_get_rhport(daddr), daddr, ep_addr);
}
bool usbh_edpt_busy(uint8_t dev_addr, uint8_t ep_addr) {
usbh_device_t* dev = get_device(dev_addr);
TU_VERIFY(dev);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
return dev->ep_status[epnum][dir].busy;
}
//--------------------------------------------------------------------+
// HCD Event Handler
//--------------------------------------------------------------------+
bool tuh_bus_info_get(uint8_t daddr, tuh_bus_info_t* bus_info) {
usbh_device_t const* dev = get_device(daddr);
if (dev) {
*bus_info = dev->bus_info;
} else {
*bus_info = _usbh_data.dev0_bus;
}
return true;
}
TU_ATTR_FAST_FUNC void hcd_event_handler(hcd_event_t const* event, bool in_isr) {
switch (event->event_id) {
case HCD_EVENT_DEVICE_ATTACH:
case HCD_EVENT_DEVICE_REMOVE:
// Attach debouncing on roothub: skip attach/remove while debouncing delay
if (event->connection.hub_addr == 0) {
if (tu_bit_test(_usbh_data.attach_debouncing_bm, event->rhport)) {
return;
}
if (event->event_id == HCD_EVENT_DEVICE_ATTACH) {
// No debouncing, set flag if attach event
_usbh_data.attach_debouncing_bm |= TU_BIT(event->rhport);
}
}
break;
default: break;
}
queue_event(event, in_isr);
}
//--------------------------------------------------------------------+
// Descriptors Async
//--------------------------------------------------------------------+
// generic helper to get a descriptor
// if blocking, user_data is pointed to xfer_result
TU_ATTR_ALWAYS_INLINE static inline
bool _get_descriptor(uint8_t daddr, uint8_t type, uint8_t index, uint16_t language_id, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_IN
},
.bRequest = TUSB_REQ_GET_DESCRIPTOR,
.wValue = tu_htole16( TU_U16(type, index) ),
.wIndex = tu_htole16(language_id),
.wLength = tu_htole16(len)
};
tuh_xfer_t xfer = {
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = buffer,
.complete_cb = complete_cb,
.user_data = user_data
};
return tuh_control_xfer(&xfer);
}
bool tuh_descriptor_get(uint8_t daddr, uint8_t type, uint8_t index, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return _get_descriptor(daddr, type, index, 0x0000, buffer, len, complete_cb, user_data);
}
bool tuh_descriptor_get_device(uint8_t daddr, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
len = tu_min16(len, sizeof(tusb_desc_device_t));
return tuh_descriptor_get(daddr, TUSB_DESC_DEVICE, 0, buffer, len, complete_cb, user_data);
}
bool tuh_descriptor_get_configuration(uint8_t daddr, uint8_t index, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return tuh_descriptor_get(daddr, TUSB_DESC_CONFIGURATION, index, buffer, len, complete_cb, user_data);
}
//------------- String Descriptor -------------//
bool tuh_descriptor_get_string(uint8_t daddr, uint8_t index, uint16_t language_id, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return _get_descriptor(daddr, TUSB_DESC_STRING, index, language_id, buffer, len, complete_cb, user_data);
}
// Get manufacturer string descriptor
bool tuh_descriptor_get_manufacturer_string(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
usbh_device_t const* dev = get_device(daddr);
TU_VERIFY(dev && dev->iManufacturer);
return tuh_descriptor_get_string(daddr, dev->iManufacturer, language_id, buffer, len, complete_cb, user_data);
}
// Get product string descriptor
bool tuh_descriptor_get_product_string(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
usbh_device_t const* dev = get_device(daddr);
TU_VERIFY(dev && dev->iProduct);
return tuh_descriptor_get_string(daddr, dev->iProduct, language_id, buffer, len, complete_cb, user_data);
}
// Get serial string descriptor
bool tuh_descriptor_get_serial_string(uint8_t daddr, uint16_t language_id, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
usbh_device_t const* dev = get_device(daddr);
TU_VERIFY(dev && dev->iSerialNumber);
return tuh_descriptor_get_string(daddr, dev->iSerialNumber, language_id, buffer, len, complete_cb, user_data);
}
// Get HID report descriptor
// if blocking, user_data is pointed to xfer_result
bool tuh_descriptor_get_hid_report(uint8_t daddr, uint8_t itf_num, uint8_t desc_type, uint8_t index, void* buffer, uint16_t len,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_LOG_USBH("HID Get Report Descriptor\r\n");
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_IN
},
.bRequest = TUSB_REQ_GET_DESCRIPTOR,
.wValue = tu_htole16(TU_U16(desc_type, index)),
.wIndex = tu_htole16((uint16_t) itf_num),
.wLength = len
};
tuh_xfer_t xfer = {
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = buffer,
.complete_cb = complete_cb,
.user_data = user_data
};
return tuh_control_xfer(&xfer);
}
bool tuh_address_set(uint8_t daddr, uint8_t new_addr,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_LOG_USBH("Set Address = %d\r\n", new_addr);
const tusb_control_request_t request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_OUT
},
.bRequest = TUSB_REQ_SET_ADDRESS,
.wValue = tu_htole16(new_addr),
.wIndex = 0,
.wLength = 0
};
tuh_xfer_t xfer = {
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = complete_cb,
.user_data = user_data
};
TU_ASSERT(tuh_control_xfer(&xfer));
return true;
}
bool tuh_configuration_set(uint8_t daddr, uint8_t config_num,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_LOG_USBH("Set Configuration = %d\r\n", config_num);
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_OUT
},
.bRequest = TUSB_REQ_SET_CONFIGURATION,
.wValue = tu_htole16(config_num),
.wIndex = 0,
.wLength = 0
};
tuh_xfer_t xfer = {
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = complete_cb,
.user_data = user_data
};
return tuh_control_xfer(&xfer);
}
bool tuh_interface_set(uint8_t daddr, uint8_t itf_num, uint8_t itf_alt,
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_LOG_USBH("Set Interface %u Alternate %u\r\n", itf_num, itf_alt);
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_OUT
},
.bRequest = TUSB_REQ_SET_INTERFACE,
.wValue = tu_htole16(itf_alt),
.wIndex = tu_htole16(itf_num),
.wLength = 0
};
tuh_xfer_t xfer = {
.daddr = daddr,
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = complete_cb,
.user_data = user_data
};
return tuh_control_xfer(&xfer);
}
//--------------------------------------------------------------------+
// Detaching
//--------------------------------------------------------------------+
// a device unplugged from rhport:hub_addr:hub_port
static void process_removed_device(uint8_t rhport, uint8_t hub_addr, uint8_t hub_port) {
// Find the all devices (star-network) under port that is unplugged
#if CFG_TUH_HUB
uint8_t removing_hubs[CFG_TUH_HUB] = { 0 };
#endif
do {
for (uint8_t dev_id = 0; dev_id < TOTAL_DEVICES; dev_id++) {
usbh_device_t* dev = &_usbh_devices[dev_id];
uint8_t const daddr = dev_id + 1;
// hub_addr = 0 means roothub, hub_port = 0 means all devices of downstream hub
if (dev->bus_info.rhport == rhport && dev->connected &&
(hub_addr == 0 || dev->bus_info.hub_addr == hub_addr) &&
(hub_port == 0 || dev->bus_info.hub_port == hub_port)) {
TU_LOG_USBH("[%u:%u:%u] unplugged address = %u\r\n", rhport, hub_addr, hub_port, daddr);
#if CFG_TUH_HUB
if (is_hub_addr(daddr)) {
TU_LOG_USBH(" is a HUB device %u\r\n", daddr);
removing_hubs[dev_id - CFG_TUH_DEVICE_MAX] = 1;
} else
#endif
{
// Invoke callback before closing driver (maybe call it later ?)
if (tuh_umount_cb) {
tuh_umount_cb(daddr);
}
}
// Close class driver
for (uint8_t drv_id = 0; drv_id < TOTAL_DRIVER_COUNT; drv_id++) {
usbh_class_driver_t const* driver = get_driver(drv_id);
if (driver) {
driver->close(daddr);
}
}
usbh_device_close(rhport, daddr);
clear_device(dev);
}
}
#if CFG_TUH_HUB
// if a hub is removed, we need to remove all of its downstream devices
if (tu_mem_is_zero(removing_hubs, CFG_TUH_HUB)) {
break;
}
// find a marked hub to process
for (uint8_t h_id = 0; h_id < CFG_TUH_HUB; h_id++) {
if (removing_hubs[h_id]) {
removing_hubs[h_id] = 0;
// update hub_addr and hub_port for next loop
hub_addr = h_id + 1 + CFG_TUH_DEVICE_MAX;
hub_port = 0;
break;
}
}
#else
break;
#endif
} while(1);
}
//--------------------------------------------------------------------+
// Enumeration Process
// is a lengthy process with a series of control transfer to configure newly attached device.
// NOTE: due to the shared control buffer, we must complete enumerating
// one device before enumerating another one.
//--------------------------------------------------------------------+
enum { // USB 2.0 specs 7.1.7 for timing
ENUM_DEBOUNCING_DELAY_MS = 150, // T(ATTDB) minimum 100 ms for stable connection
ENUM_RESET_ROOT_DELAY_MS = 50, // T(DRSTr) minimum 50 ms for reset from root port
ENUM_RESET_HUB_DELAY_MS = 20, // T(DRST) 10-20 ms for hub reset
ENUM_RESET_RECOVERY_DELAY_MS = 10, // T(RSTRCY) minimum 10 ms for reset recovery
ENUM_SET_ADDRESS_RECOVERY_DELAY_MS = 2, // USB 2.0 Spec 9.2.6.3 min is 2 ms
};
enum {
ENUM_IDLE,
ENUM_HUB_RERSET,
ENUM_HUB_GET_STATUS_AFTER_RESET,
ENUM_HUB_CLEAR_RESET,
ENUM_HUB_CLEAR_RESET_COMPLETE,
ENUM_ADDR0_DEVICE_DESC,
ENUM_SET_ADDR,
ENUM_GET_DEVICE_DESC,
ENUM_GET_STRING_LANGUAGE_ID_LEN,
ENUM_GET_STRING_LANGUAGE_ID,
ENUM_GET_STRING_MANUFACTURER_LEN,
ENUM_GET_STRING_MANUFACTURER,
ENUM_GET_STRING_PRODUCT_LEN,
ENUM_GET_STRING_PRODUCT,
ENUM_GET_STRING_SERIAL_LEN,
ENUM_GET_STRING_SERIAL,
ENUM_GET_9BYTE_CONFIG_DESC,
ENUM_GET_FULL_CONFIG_DESC,
ENUM_SET_CONFIG,
ENUM_CONFIG_DRIVER
};
static uint8_t enum_get_new_address(bool is_hub);
static bool enum_parse_configuration_desc (uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg);
static void enum_full_complete(void);
static void process_enumeration(tuh_xfer_t* xfer);
// start a new enumeration process
static bool enum_new_device(hcd_event_t* event) {
tuh_bus_info_t* dev0_bus = &_usbh_data.dev0_bus;
dev0_bus->rhport = event->rhport;
dev0_bus->hub_addr = event->connection.hub_addr;
dev0_bus->hub_port = event->connection.hub_port;
// wait until device connection is stable TODO non blocking
tusb_time_delay_ms_api(ENUM_DEBOUNCING_DELAY_MS);
// clear roothub debouncing delay
if (dev0_bus->hub_addr == 0) {
_usbh_data.attach_debouncing_bm &= (uint8_t) ~TU_BIT(dev0_bus->rhport);
}
if (dev0_bus->hub_addr == 0) {
// connected directly to roothub
// USB bus not active and frame number is not available yet.
// need to depend on tusb_time_millis_api() TODO non blocking
if (!hcd_port_connect_status(dev0_bus->rhport)) {
TU_LOG_USBH("Device unplugged while debouncing\r\n");
enum_full_complete();
return true;
}
// reset device
hcd_port_reset(dev0_bus->rhport);
tusb_time_delay_ms_api(ENUM_RESET_ROOT_DELAY_MS);
hcd_port_reset_end(dev0_bus->rhport);
if (!hcd_port_connect_status(dev0_bus->rhport)) {
// device unplugged while delaying
enum_full_complete();
return true;
}
dev0_bus->speed = hcd_port_speed_get(dev0_bus->rhport);
TU_LOG_USBH("%s Speed\r\n", tu_str_speed[dev0_bus->speed]);
// fake transfer to kick-off the enumeration process
tuh_xfer_t xfer;
xfer.daddr = 0;
xfer.result = XFER_RESULT_SUCCESS;
xfer.user_data = ENUM_ADDR0_DEVICE_DESC;
process_enumeration(&xfer);
}
#if CFG_TUH_HUB
else {
// connected via hub
TU_VERIFY(dev0_bus->hub_port != 0);
TU_ASSERT(hub_port_get_status(dev0_bus->hub_addr, dev0_bus->hub_port, NULL,
process_enumeration, ENUM_HUB_RERSET));
}
#endif // hub
return true;
}
// process device enumeration
static void process_enumeration(tuh_xfer_t* xfer) {
// Retry a few times while enumerating since device can be unstable when starting up
static uint8_t failed_count = 0;
if (XFER_RESULT_FAILED == xfer->result) {
enum {
ATTEMPT_COUNT_MAX = 3,
ATTEMPT_DELAY_MS = 100
};
// retry if not reaching max attempt
failed_count++;
bool retry = (_usbh_data.enumerating_daddr != TUSB_INDEX_INVALID_8) && (failed_count < ATTEMPT_COUNT_MAX);
if (retry) {
tusb_time_delay_ms_api(ATTEMPT_DELAY_MS); // delay a bit
TU_LOG_USBH("Enumeration attempt %u/%u\r\n", failed_count+1, ATTEMPT_COUNT_MAX);
retry = tuh_control_xfer(xfer);
}
if (!retry) {
enum_full_complete(); // complete as failed
}
return;
}
failed_count = 0;
uint8_t const daddr = xfer->daddr;
uintptr_t const state = xfer->user_data;
usbh_device_t* dev = get_device(daddr);
tuh_bus_info_t* dev0_bus = &_usbh_data.dev0_bus;
if (daddr > 0) {
TU_ASSERT(dev,);
}
uint16_t langid = 0x0409; // default is English
switch (state) {
#if CFG_TUH_HUB
case ENUM_HUB_RERSET: {
hub_port_status_response_t port_status;
hub_port_get_status_local(dev0_bus->hub_addr, dev0_bus->hub_port, &port_status);
if (!port_status.status.connection) {
TU_LOG_USBH("Device unplugged from hub while debouncing\r\n");
enum_full_complete();
return;
}
TU_ASSERT(hub_port_reset(dev0_bus->hub_addr, dev0_bus->hub_port, process_enumeration, ENUM_HUB_GET_STATUS_AFTER_RESET),);
break;
}
case ENUM_HUB_GET_STATUS_AFTER_RESET: {
tusb_time_delay_ms_api(ENUM_RESET_HUB_DELAY_MS); // wait for reset to take effect
// get status to check for reset change
TU_ASSERT(hub_port_get_status(dev0_bus->hub_addr, dev0_bus->hub_port, NULL, process_enumeration, ENUM_HUB_CLEAR_RESET),);
break;
}
case ENUM_HUB_CLEAR_RESET: {
hub_port_status_response_t port_status;
hub_port_get_status_local(dev0_bus->hub_addr, dev0_bus->hub_port, &port_status);
if (port_status.change.reset) {
// Acknowledge Port Reset Change
TU_ASSERT(hub_port_clear_reset_change(dev0_bus->hub_addr, dev0_bus->hub_port, process_enumeration, ENUM_HUB_CLEAR_RESET_COMPLETE),);
} else {
// maybe retry if reset change not set but we need timeout to prevent infinite loop
// TU_ASSERT(hub_port_get_status(dev0_bus->hub_addr, dev0_bus->hub_port, NULL, process_enumeration, ENUM_HUB_CLEAR_RESET_COMPLETE),);
}
break;
}
case ENUM_HUB_CLEAR_RESET_COMPLETE: {
hub_port_status_response_t port_status;
hub_port_get_status_local(dev0_bus->hub_addr, dev0_bus->hub_port, &port_status);
if (!port_status.status.connection) {
TU_LOG_USBH("Device unplugged from hub (not addressed yet)\r\n");
enum_full_complete();
return;
}
dev0_bus->speed = (port_status.status.high_speed) ? TUSB_SPEED_HIGH :
(port_status.status.low_speed) ? TUSB_SPEED_LOW : TUSB_SPEED_FULL;
TU_ATTR_FALLTHROUGH;
}
#endif
case ENUM_ADDR0_DEVICE_DESC: {
tusb_time_delay_ms_api(ENUM_RESET_RECOVERY_DELAY_MS); // reset recovery
// TODO probably doesn't need to open/close each enumeration
uint8_t const addr0 = 0;
TU_ASSERT(usbh_edpt_control_open(addr0, 8),);
// Get first 8 bytes of device descriptor for control endpoint size
TU_LOG_USBH("Get 8 byte of Device Descriptor\r\n");
TU_ASSERT(tuh_descriptor_get_device(addr0, _usbh_epbuf.ctrl, 8,
process_enumeration, ENUM_SET_ADDR),);
break;
}
case ENUM_SET_ADDR: {
// Due to physical debouncing, some devices can cause multiple attaches (actually reset) without detach event
// Force remove currently mounted with the same bus info (rhport, hub addr, hub port) if exists
process_removed_device(dev0_bus->rhport, dev0_bus->hub_addr, dev0_bus->hub_port);
const tusb_desc_device_t *desc_device = (const tusb_desc_device_t *) _usbh_epbuf.ctrl;
const uint8_t new_addr = enum_get_new_address(desc_device->bDeviceClass == TUSB_CLASS_HUB);
TU_ASSERT(new_addr != 0,);
usbh_device_t* new_dev = get_device(new_addr);
new_dev->bus_info = *dev0_bus;
new_dev->connected = 1;
new_dev->bMaxPacketSize0 = desc_device->bMaxPacketSize0;
TU_ASSERT(tuh_address_set(0, new_addr, process_enumeration, ENUM_GET_DEVICE_DESC),);
break;
}
case ENUM_GET_DEVICE_DESC: {
tusb_time_delay_ms_api(ENUM_SET_ADDRESS_RECOVERY_DELAY_MS); // set address recovery
const uint8_t new_addr = (uint8_t) tu_le16toh(xfer->setup->wValue);
usbh_device_t* new_dev = get_device(new_addr);
TU_ASSERT(new_dev,);
new_dev->addressed = 1;
_usbh_data.enumerating_daddr = new_addr;
usbh_device_close(dev0_bus->rhport, 0); // close dev0
TU_ASSERT(usbh_edpt_control_open(new_addr, new_dev->bMaxPacketSize0),); // open new control endpoint
TU_LOG_USBH("Get Device Descriptor\r\n");
TU_ASSERT(tuh_descriptor_get_device(new_addr, _usbh_epbuf.ctrl, sizeof(tusb_desc_device_t),
process_enumeration, ENUM_GET_STRING_LANGUAGE_ID_LEN),);
break;
}
// For string descriptor (langid, manufacturer, product, serila): always get the first 2 bytes
// to determine the length first. otherwise, some device may have buffer overflow.
case ENUM_GET_STRING_LANGUAGE_ID_LEN: {
// save the received device descriptor
tusb_desc_device_t const *desc_device = (tusb_desc_device_t const *) _usbh_epbuf.ctrl;
dev->bcdUSB = desc_device->bcdUSB;
dev->bDeviceClass = desc_device->bDeviceClass;
dev->bDeviceSubClass = desc_device->bDeviceSubClass;
dev->bDeviceProtocol = desc_device->bDeviceProtocol;
dev->bMaxPacketSize0 = desc_device->bMaxPacketSize0;
dev->idVendor = desc_device->idVendor;
dev->idProduct = desc_device->idProduct;
dev->bcdDevice = desc_device->bcdDevice;
dev->iManufacturer = desc_device->iManufacturer;
dev->iProduct = desc_device->iProduct;
dev->iSerialNumber = desc_device->iSerialNumber;
dev->bNumConfigurations = desc_device->bNumConfigurations;
tuh_enum_descriptor_device_cb(daddr, desc_device); // callback
tuh_descriptor_get_string_langid(daddr, _usbh_epbuf.ctrl, 2,
process_enumeration, ENUM_GET_STRING_LANGUAGE_ID);
break;
}
case ENUM_GET_STRING_LANGUAGE_ID: {
const uint8_t str_len = xfer->buffer[0];
tuh_descriptor_get_string_langid(daddr, _usbh_epbuf.ctrl, str_len,
process_enumeration, ENUM_GET_STRING_MANUFACTURER_LEN);
break;
}
case ENUM_GET_STRING_MANUFACTURER_LEN: {
const tusb_desc_string_t* desc_langid = (const tusb_desc_string_t *) _usbh_epbuf.ctrl;
if (desc_langid->bLength >= 4) {
langid = tu_le16toh(desc_langid->utf16le[0]); // previous request is langid
}
if (dev->iManufacturer != 0) {
tuh_descriptor_get_string(daddr, dev->iManufacturer, langid, _usbh_epbuf.ctrl, 2,
process_enumeration, ENUM_GET_STRING_MANUFACTURER);
break;
}else {
TU_ATTR_FALLTHROUGH;
}
}
case ENUM_GET_STRING_MANUFACTURER: {
if (dev->iManufacturer != 0) {
langid = tu_le16toh(xfer->setup->wIndex); // langid from length's request
const uint8_t str_len = xfer->buffer[0];
tuh_descriptor_get_string(daddr, dev->iManufacturer, langid, _usbh_epbuf.ctrl, str_len,
process_enumeration, ENUM_GET_STRING_PRODUCT_LEN);
break;
} else {
TU_ATTR_FALLTHROUGH;
}
}
case ENUM_GET_STRING_PRODUCT_LEN:
if (dev->iProduct != 0) {
if (state == ENUM_GET_STRING_PRODUCT_LEN) {
langid = tu_le16toh(xfer->setup->wIndex); // get langid from previous setup packet if not fall through
}
tuh_descriptor_get_string(daddr, dev->iProduct, langid, _usbh_epbuf.ctrl, 2,
process_enumeration, ENUM_GET_STRING_PRODUCT);
break;
} else {
TU_ATTR_FALLTHROUGH;
}
case ENUM_GET_STRING_PRODUCT: {
if (dev->iProduct != 0) {
langid = tu_le16toh(xfer->setup->wIndex); // langid from length's request
const uint8_t str_len = xfer->buffer[0];
tuh_descriptor_get_string(daddr, dev->iProduct, langid, _usbh_epbuf.ctrl, str_len,
process_enumeration, ENUM_GET_STRING_SERIAL_LEN);
break;
} else {
TU_ATTR_FALLTHROUGH;
}
}
case ENUM_GET_STRING_SERIAL_LEN:
if (dev->iSerialNumber != 0) {
if (state == ENUM_GET_STRING_SERIAL_LEN) {
langid = tu_le16toh(xfer->setup->wIndex); // get langid from previous setup packet if not fall through
}
tuh_descriptor_get_string(daddr, dev->iSerialNumber, langid, _usbh_epbuf.ctrl, 2,
process_enumeration, ENUM_GET_STRING_SERIAL);
break;
} else {
TU_ATTR_FALLTHROUGH;
}
case ENUM_GET_STRING_SERIAL: {
if (dev->iSerialNumber != 0) {
langid = tu_le16toh(xfer->setup->wIndex); // langid from length's request
const uint8_t str_len = xfer->buffer[0];
tuh_descriptor_get_string(daddr, dev->iSerialNumber, langid, _usbh_epbuf.ctrl, str_len,
process_enumeration, ENUM_GET_9BYTE_CONFIG_DESC);
break;
} else {
TU_ATTR_FALLTHROUGH;
}
}
case ENUM_GET_9BYTE_CONFIG_DESC: {
// Get 9-byte for total length
uint8_t const config_idx = 0;
TU_LOG_USBH("Get Configuration[%u] Descriptor (9 bytes)\r\n", config_idx);
TU_ASSERT(tuh_descriptor_get_configuration(daddr, config_idx, _usbh_epbuf.ctrl, 9,
process_enumeration, ENUM_GET_FULL_CONFIG_DESC),);
break;
}
case ENUM_GET_FULL_CONFIG_DESC: {
uint8_t const* desc_config = _usbh_epbuf.ctrl;
// Use offsetof to avoid pointer to the odd/misaligned address
uint16_t const total_len = tu_le16toh(tu_unaligned_read16(desc_config + offsetof(tusb_desc_configuration_t, wTotalLength)));
// TODO not enough buffer to hold configuration descriptor
TU_ASSERT(total_len <= CFG_TUH_ENUMERATION_BUFSIZE,);
// Get full configuration descriptor
uint8_t const config_idx = (uint8_t) tu_le16toh(xfer->setup->wIndex);
TU_LOG_USBH("Get Configuration[%u] Descriptor\r\n", config_idx);
TU_ASSERT(tuh_descriptor_get_configuration(daddr, config_idx, _usbh_epbuf.ctrl, total_len,
process_enumeration, ENUM_SET_CONFIG),);
break;
}
case ENUM_SET_CONFIG: {
uint8_t config_idx = (uint8_t) tu_le16toh(xfer->setup->wIndex);
if (tuh_enum_descriptor_configuration_cb(daddr, config_idx, (const tusb_desc_configuration_t*) _usbh_epbuf.ctrl)) {
TU_ASSERT(tuh_configuration_set(daddr, config_idx+1, process_enumeration, ENUM_CONFIG_DRIVER),);
} else {
config_idx++;
TU_ASSERT(config_idx < dev->bNumConfigurations,);
TU_LOG_USBH("Get Configuration[%u] Descriptor (9 bytes)\r\n", config_idx);
TU_ASSERT(tuh_descriptor_get_configuration(daddr, config_idx, _usbh_epbuf.ctrl, 9,
process_enumeration, ENUM_GET_FULL_CONFIG_DESC),);
}
break;
}
case ENUM_CONFIG_DRIVER: {
TU_LOG_USBH("Device configured\r\n");
dev->configured = 1;
// Parse configuration & set up drivers
// driver_open() must not make any usb transfer
TU_ASSERT(enum_parse_configuration_desc(daddr, (tusb_desc_configuration_t*) _usbh_epbuf.ctrl),);
// Start the Set Configuration process for interfaces (itf = TUSB_INDEX_INVALID_8)
// Since driver can perform control transfer within its set_config, this is done asynchronously.
// The process continue with next interface when class driver complete its sequence with usbh_driver_set_config_complete()
// TODO use separated API instead of using TUSB_INDEX_INVALID_8
usbh_driver_set_config_complete(daddr, TUSB_INDEX_INVALID_8);
break;
}
default:
enum_full_complete(); // stop enumeration if unknown state
break;
}
}
static uint8_t enum_get_new_address(bool is_hub) {
uint8_t start;
uint8_t end;
if ( is_hub ) {
start = CFG_TUH_DEVICE_MAX;
end = start + CFG_TUH_HUB;
}else {
start = 0;
end = start + CFG_TUH_DEVICE_MAX;
}
for (uint8_t idx = start; idx < end; idx++) {
if (!_usbh_devices[idx].connected) {
return (idx + 1);
}
}
return 0; // invalid address
}
static bool enum_parse_configuration_desc(uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg) {
usbh_device_t* dev = get_device(dev_addr);
uint16_t const total_len = tu_le16toh(desc_cfg->wTotalLength);
uint8_t const* desc_end = ((uint8_t const*) desc_cfg) + total_len;
uint8_t const* p_desc = tu_desc_next(desc_cfg);
TU_LOG_USBH("Parsing Configuration descriptor (wTotalLength = %u)\r\n", total_len);
// parse each interfaces
while( p_desc < desc_end ) {
if ( 0 == tu_desc_len(p_desc) ) {
// A zero length descriptor indicates that the device is off spec (e.g. wrong wTotalLength).
// Parsed interfaces should still be usable
TU_LOG_USBH("Encountered a zero-length descriptor after %" PRIu32 " bytes\r\n", (uint32_t)p_desc - (uint32_t)desc_cfg);
break;
}
uint8_t assoc_itf_count = 1;
// Class will always starts with Interface Association (if any) and then Interface descriptor
if ( TUSB_DESC_INTERFACE_ASSOCIATION == tu_desc_type(p_desc) ) {
tusb_desc_interface_assoc_t const * desc_iad = (tusb_desc_interface_assoc_t const *) p_desc;
assoc_itf_count = desc_iad->bInterfaceCount;
p_desc = tu_desc_next(p_desc); // next to Interface
// IAD's first interface number and class should match with opened interface
//TU_ASSERT(desc_iad->bFirstInterface == desc_itf->bInterfaceNumber &&
// desc_iad->bFunctionClass == desc_itf->bInterfaceClass);
}
TU_ASSERT( TUSB_DESC_INTERFACE == tu_desc_type(p_desc) );
tusb_desc_interface_t const* desc_itf = (tusb_desc_interface_t const*) p_desc;
#if CFG_TUH_MIDI
// MIDI has 2 interfaces (Audio Control v1 + MIDIStreaming) but does not have IAD
// manually force associated count = 2
if (1 == assoc_itf_count &&
TUSB_CLASS_AUDIO == desc_itf->bInterfaceClass &&
AUDIO_SUBCLASS_CONTROL == desc_itf->bInterfaceSubClass &&
AUDIO_FUNC_PROTOCOL_CODE_UNDEF == desc_itf->bInterfaceProtocol) {
assoc_itf_count = 2;
}
#endif
#if CFG_TUH_CDC
// Some legacy CDC device does not use IAD but rather use device class as hint to combine 2 interfaces
// manually force associated count = 2
if (1 == assoc_itf_count &&
TUSB_CLASS_CDC == desc_itf->bInterfaceClass &&
CDC_COMM_SUBCLASS_ABSTRACT_CONTROL_MODEL == desc_itf->bInterfaceSubClass) {
assoc_itf_count = 2;
}
#endif
uint16_t const drv_len = tu_desc_get_interface_total_len(desc_itf, assoc_itf_count, (uint16_t) (desc_end-p_desc));
TU_ASSERT(drv_len >= sizeof(tusb_desc_interface_t));
// Find driver for this interface
for (uint8_t drv_id = 0; drv_id < TOTAL_DRIVER_COUNT; drv_id++) {
usbh_class_driver_t const * driver = get_driver(drv_id);
if (driver && driver->open(dev->bus_info.rhport, dev_addr, desc_itf, drv_len) ) {
// open successfully
TU_LOG_USBH(" %s opened\r\n", driver->name);
// bind (associated) interfaces to found driver
for(uint8_t i=0; i<assoc_itf_count; i++) {
uint8_t const itf_num = desc_itf->bInterfaceNumber+i;
// Interface number must not be used already
TU_ASSERT( TUSB_INDEX_INVALID_8 == dev->itf2drv[itf_num] );
dev->itf2drv[itf_num] = drv_id;
}
// bind all endpoints to found driver
tu_edpt_bind_driver(dev->ep2drv, desc_itf, drv_len, drv_id);
break; // exit driver find loop
}
if (drv_id == TOTAL_DRIVER_COUNT - 1) {
TU_LOG_USBH("[%u:%u] Interface %u: class = %u subclass = %u protocol = %u is not supported\r\n",
dev->bus_info.rhport, dev_addr, desc_itf->bInterfaceNumber, desc_itf->bInterfaceClass, desc_itf->bInterfaceSubClass, desc_itf->bInterfaceProtocol);
}
}
// next Interface or IAD descriptor
p_desc += drv_len;
}
return true;
}
void usbh_driver_set_config_complete(uint8_t dev_addr, uint8_t itf_num) {
usbh_device_t* dev = get_device(dev_addr);
for(itf_num++; itf_num < CFG_TUH_INTERFACE_MAX; itf_num++) {
// continue with next valid interface
// IAD binding interface such as CDCs should return itf_num + 1 when complete
// with usbh_driver_set_config_complete()
uint8_t const drv_id = dev->itf2drv[itf_num];
usbh_class_driver_t const * driver = get_driver(drv_id);
if (driver) {
TU_LOG_USBH("%s set config: itf = %u\r\n", driver->name, itf_num);
driver->set_config(dev_addr, itf_num);
break;
}
}
// all interface are configured
if (itf_num == CFG_TUH_INTERFACE_MAX) {
enum_full_complete();
if (is_hub_addr(dev_addr)) {
TU_LOG_USBH("HUB address = %u is mounted\r\n", dev_addr);
}else {
// Invoke callback if available
if (tuh_mount_cb) {
tuh_mount_cb(dev_addr);
}
}
}
}
static void enum_full_complete(void) {
// mark enumeration as complete
_usbh_data.enumerating_daddr = TUSB_INDEX_INVALID_8;
#if CFG_TUH_HUB
if (_usbh_data.dev0_bus.hub_addr != 0) {
hub_edpt_status_xfer(_usbh_data.dev0_bus.hub_addr); // get next hub status
}
#endif
}
#endif