1444 lines
49 KiB
C
1444 lines
49 KiB
C
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2024 Ha Thach (tinyusb.org)
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*
|
|
* This file is part of the TinyUSB stack.
|
|
*/
|
|
|
|
#include "tusb_option.h"
|
|
|
|
#if CFG_TUH_ENABLED && defined(TUP_USBIP_DWC2) && !CFG_TUH_MAX3421
|
|
|
|
#if !(CFG_TUH_DWC2_SLAVE_ENABLE || CFG_TUH_DWC2_DMA_ENABLE)
|
|
#error DWC2 require either CFG_TUH_DWC2_SLAVE_ENABLE or CFG_TUH_DWC2_DMA_ENABLE to be enabled
|
|
#endif
|
|
|
|
// Debug level for DWC2
|
|
#define DWC2_DEBUG 2
|
|
|
|
#include "host/hcd.h"
|
|
#include "host/usbh.h"
|
|
#include "dwc2_common.h"
|
|
|
|
// Max number of endpoints application can open, can be larger than DWC2_CHANNEL_COUNT_MAX
|
|
#ifndef CFG_TUH_DWC2_ENDPOINT_MAX
|
|
#define CFG_TUH_DWC2_ENDPOINT_MAX 16
|
|
#endif
|
|
|
|
#define DWC2_CHANNEL_COUNT_MAX 16 // absolute max channel count
|
|
TU_VERIFY_STATIC(CFG_TUH_DWC2_ENDPOINT_MAX <= 255, "currently only use 8-bit for index");
|
|
|
|
enum {
|
|
HPRT_W1_MASK = HPRT_CONN_DETECT | HPRT_ENABLE | HPRT_ENABLE_CHANGE | HPRT_OVER_CURRENT_CHANGE | HPRT_SUSPEND
|
|
};
|
|
|
|
enum {
|
|
HCD_XFER_ERROR_MAX = 3
|
|
};
|
|
|
|
enum {
|
|
HCD_XFER_PERIOD_SPLIT_NYET_MAX = 3
|
|
};
|
|
|
|
//--------------------------------------------------------------------
|
|
//
|
|
//--------------------------------------------------------------------
|
|
|
|
// Host driver struct for each opened endpoint
|
|
typedef struct {
|
|
union {
|
|
uint32_t hcchar;
|
|
dwc2_channel_char_t hcchar_bm;
|
|
};
|
|
union {
|
|
uint32_t hcsplt;
|
|
dwc2_channel_split_t hcsplt_bm;
|
|
};
|
|
|
|
struct TU_ATTR_PACKED {
|
|
uint32_t uframe_interval : 18; // micro-frame interval
|
|
uint32_t speed : 2;
|
|
uint32_t next_pid : 2; // PID for next transfer
|
|
uint32_t next_do_ping : 1; // Do PING for next transfer if possible (highspeed OUT)
|
|
// uint32_t : 9;
|
|
};
|
|
|
|
uint32_t uframe_countdown; // micro-frame count down to transfer for periodic, only need 18-bit
|
|
|
|
uint8_t* buffer;
|
|
uint16_t buflen;
|
|
} hcd_endpoint_t;
|
|
|
|
// Additional info for each channel when it is active
|
|
typedef struct {
|
|
volatile bool allocated;
|
|
uint8_t ep_id;
|
|
struct TU_ATTR_PACKED {
|
|
uint8_t err_count : 3;
|
|
uint8_t period_split_nyet_count : 3;
|
|
uint8_t halted_nyet : 1;
|
|
};
|
|
uint8_t result;
|
|
|
|
uint16_t xferred_bytes; // bytes that accumulate transferred though USB bus for the whole hcd_edpt_xfer(), which can
|
|
// be composed of multiple channel_xfer_start() (retry with NAK/NYET)
|
|
uint16_t fifo_bytes; // bytes written/read from/to FIFO (may not be transferred on USB bus).
|
|
} hcd_xfer_t;
|
|
|
|
typedef struct {
|
|
hcd_xfer_t xfer[DWC2_CHANNEL_COUNT_MAX];
|
|
hcd_endpoint_t edpt[CFG_TUH_DWC2_ENDPOINT_MAX];
|
|
bool attach_debounce; // if true: wait for the debounce delay before issuing new attach events
|
|
} hcd_data_t;
|
|
|
|
hcd_data_t _hcd_data;
|
|
|
|
//--------------------------------------------------------------------
|
|
//
|
|
//--------------------------------------------------------------------
|
|
TU_ATTR_ALWAYS_INLINE static inline uint8_t dwc2_channel_count(const dwc2_regs_t* dwc2) {
|
|
const dwc2_ghwcfg2_t ghwcfg2 = {.value = dwc2->ghwcfg2};
|
|
return tu_min8(ghwcfg2.num_host_ch + 1, DWC2_CHANNEL_COUNT_MAX);
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline tusb_speed_t hprt_speed_get(dwc2_regs_t* dwc2) {
|
|
tusb_speed_t speed;
|
|
const dwc2_hprt_t hprt = {.value = dwc2->hprt};
|
|
switch(hprt.speed) {
|
|
case HPRT_SPEED_HIGH: speed = TUSB_SPEED_HIGH; break;
|
|
case HPRT_SPEED_FULL: speed = TUSB_SPEED_FULL; break;
|
|
case HPRT_SPEED_LOW : speed = TUSB_SPEED_LOW ; break;
|
|
default:
|
|
speed = TUSB_SPEED_INVALID;
|
|
TU_BREAKPOINT();
|
|
break;
|
|
}
|
|
return speed;
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline bool dma_host_enabled(const dwc2_regs_t* dwc2) {
|
|
(void) dwc2;
|
|
// Internal DMA only
|
|
const dwc2_ghwcfg2_t ghwcfg2 = {.value = dwc2->ghwcfg2};
|
|
return CFG_TUH_DWC2_DMA_ENABLE && ghwcfg2.arch == GHWCFG2_ARCH_INTERNAL_DMA;
|
|
}
|
|
|
|
#if CFG_TUH_MEM_DCACHE_ENABLE
|
|
bool hcd_dcache_clean(const void* addr, uint32_t data_size) {
|
|
TU_VERIFY(addr && data_size);
|
|
return dwc2_dcache_clean(addr, data_size);
|
|
}
|
|
|
|
bool hcd_dcache_invalidate(const void* addr, uint32_t data_size) {
|
|
TU_VERIFY(addr && data_size);
|
|
return dwc2_dcache_invalidate(addr, data_size);
|
|
}
|
|
|
|
bool hcd_dcache_clean_invalidate(const void* addr, uint32_t data_size) {
|
|
TU_VERIFY(addr && data_size);
|
|
return dwc2_dcache_clean_invalidate(addr, data_size);
|
|
}
|
|
#endif
|
|
|
|
// Allocate a channel for new transfer
|
|
TU_ATTR_ALWAYS_INLINE static inline uint8_t channel_alloc(dwc2_regs_t* dwc2) {
|
|
const uint8_t max_channel = dwc2_channel_count(dwc2);
|
|
for (uint8_t ch_id = 0; ch_id < max_channel; ch_id++) {
|
|
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
|
|
if (!xfer->allocated) {
|
|
tu_memclr(xfer, sizeof(hcd_xfer_t));
|
|
xfer->allocated = true;
|
|
return ch_id;
|
|
}
|
|
}
|
|
return TUSB_INDEX_INVALID_8;
|
|
}
|
|
|
|
// Check if is periodic (interrupt/isochronous)
|
|
TU_ATTR_ALWAYS_INLINE static inline bool channel_is_periodic(uint32_t hcchar) {
|
|
const dwc2_channel_char_t hcchar_bm = {.value = hcchar};
|
|
return hcchar_bm.ep_type == HCCHAR_EPTYPE_INTERRUPT || hcchar_bm.ep_type == HCCHAR_EPTYPE_ISOCHRONOUS;
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline uint8_t req_queue_avail(const dwc2_regs_t* dwc2, bool is_period) {
|
|
if (is_period) {
|
|
const dwc2_hptxsts_t hptxsts = {.value = dwc2->hptxsts};
|
|
return hptxsts.req_queue_available;
|
|
} else {
|
|
const dwc2_hnptxsts_t hnptxsts = {.value = dwc2->hnptxsts};
|
|
return hnptxsts.req_queue_available;
|
|
}
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline void channel_dealloc(dwc2_regs_t* dwc2, uint8_t ch_id) {
|
|
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
|
|
xfer->allocated = false;
|
|
dwc2->haintmsk &= ~TU_BIT(ch_id);
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline bool channel_disable(const dwc2_regs_t* dwc2, dwc2_channel_t* channel) {
|
|
// disable also require request queue
|
|
TU_ASSERT(req_queue_avail(dwc2, channel_is_periodic(channel->hcchar)));
|
|
channel->hcintmsk |= HCINT_HALTED;
|
|
channel->hcchar |= HCCHAR_CHDIS | HCCHAR_CHENA; // must set both CHDIS and CHENA
|
|
return true;
|
|
}
|
|
|
|
// attempt to send IN token to receive data
|
|
TU_ATTR_ALWAYS_INLINE static inline bool channel_send_in_token(const dwc2_regs_t* dwc2, dwc2_channel_t* channel) {
|
|
TU_ASSERT(req_queue_avail(dwc2, channel_is_periodic(channel->hcchar)));
|
|
channel->hcchar |= HCCHAR_CHENA;
|
|
return true;
|
|
}
|
|
|
|
// Find currently enabled channel. Note: EP0 is bidirectional
|
|
TU_ATTR_ALWAYS_INLINE static inline uint8_t channel_find_enabled(dwc2_regs_t* dwc2, uint8_t dev_addr, uint8_t ep_num, uint8_t ep_dir) {
|
|
const uint8_t max_channel = dwc2_channel_count(dwc2);
|
|
for (uint8_t ch_id = 0; ch_id < max_channel; ch_id++) {
|
|
if (_hcd_data.xfer[ch_id].allocated) {
|
|
const dwc2_channel_char_t hcchar = {.value = dwc2->channel[ch_id].hcchar};
|
|
if (hcchar.dev_addr == dev_addr && hcchar.ep_num == ep_num && (ep_num == 0 || hcchar.ep_dir == ep_dir)) {
|
|
return ch_id;
|
|
}
|
|
}
|
|
}
|
|
return TUSB_INDEX_INVALID_8;
|
|
}
|
|
|
|
|
|
// Allocate a new endpoint
|
|
TU_ATTR_ALWAYS_INLINE static inline uint8_t edpt_alloc(void) {
|
|
for (uint32_t i = 0; i < CFG_TUH_DWC2_ENDPOINT_MAX; i++) {
|
|
hcd_endpoint_t* edpt = &_hcd_data.edpt[i];
|
|
if (edpt->hcchar_bm.enable == 0) {
|
|
tu_memclr(edpt, sizeof(hcd_endpoint_t));
|
|
edpt->hcchar_bm.enable = 1;
|
|
return i;
|
|
}
|
|
}
|
|
return TUSB_INDEX_INVALID_8;
|
|
}
|
|
|
|
// Find a endpoint that is opened previously with hcd_edpt_open()
|
|
// Note: EP0 is bidirectional
|
|
TU_ATTR_ALWAYS_INLINE static inline uint8_t edpt_find_opened(uint8_t dev_addr, uint8_t ep_num, uint8_t ep_dir) {
|
|
for (uint8_t i = 0; i < (uint8_t)CFG_TUH_DWC2_ENDPOINT_MAX; i++) {
|
|
const dwc2_channel_char_t* hcchar_bm = &_hcd_data.edpt[i].hcchar_bm;
|
|
if (hcchar_bm->enable && hcchar_bm->dev_addr == dev_addr &&
|
|
hcchar_bm->ep_num == ep_num && (ep_num == 0 || hcchar_bm->ep_dir == ep_dir)) {
|
|
return i;
|
|
}
|
|
}
|
|
return TUSB_INDEX_INVALID_8;
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline uint16_t cal_packet_count(uint16_t len, uint16_t ep_size) {
|
|
if (len == 0) {
|
|
return 1;
|
|
} else {
|
|
return tu_div_ceil(len, ep_size);
|
|
}
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline uint8_t cal_next_pid(uint8_t pid, uint8_t packet_count) {
|
|
if (packet_count & 0x01) {
|
|
return pid ^ 0x02; // toggle DATA0 and DATA1
|
|
} else {
|
|
return pid;
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------
|
|
//
|
|
//--------------------------------------------------------------------
|
|
|
|
/* USB Data FIFO Layout
|
|
|
|
The FIFO is split up into
|
|
- EPInfo: for storing DMA metadata (check dcd_dwc2.c for more details)
|
|
- 1 RX FIFO: for receiving data
|
|
- 1 TX FIFO for non-periodic (NPTX)
|
|
- 1 TX FIFO for periodic (PTX)
|
|
|
|
We allocated TX FIFO from top to bottom (using top pointer), this to allow the RX FIFO to grow dynamically which is
|
|
possible since the free space is located between the RX and TX FIFOs.
|
|
|
|
----------------- ep_fifo_size
|
|
| HCDMAn |
|
|
|--------------|-- gdfifocfg.EPINFOBASE (max is ghwcfg3.dfifo_depth)
|
|
| Non-Periodic |
|
|
| TX FIFO |
|
|
|--------------|--- GNPTXFSIZ.addr (fixed size)
|
|
| Periodic |
|
|
| TX FIFO |
|
|
|--------------|--- HPTXFSIZ.addr (expandable downward)
|
|
| FREE |
|
|
| |
|
|
|--------------|-- GRXFSIZ (expandable upward)
|
|
| RX FIFO |
|
|
---------------- 0
|
|
*/
|
|
|
|
/* Programming Guide 2.1.2 FIFO RAM allocation
|
|
* RX
|
|
* - Largest-EPsize/4 + 2 (status info). recommended x2 if high bandwidth or multiple ISO are used.
|
|
* - 2 for transfer complete and channel halted status
|
|
* - 1 for each Control/Bulk out endpoint to Handle NAK/NYET (i.e max is number of host channel)
|
|
*
|
|
* TX non-periodic (NPTX)
|
|
* - At least largest-EPsize/4, recommended x2
|
|
*
|
|
* TX periodic (PTX)
|
|
* - At least largest-EPsize*MulCount/4 (MulCount up to 3 for high-bandwidth ISO/interrupt)
|
|
*/
|
|
static void dfifo_host_init(uint8_t rhport) {
|
|
const dwc2_controller_t* dwc2_controller = &_dwc2_controller[rhport];
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
const dwc2_ghwcfg2_t ghwcfg2 = {.value = dwc2->ghwcfg2};
|
|
|
|
// Scatter/Gather DMA mode is not yet supported. Buffer DMA only need 1 words per channel
|
|
const bool is_dma = dma_host_enabled(dwc2);
|
|
uint16_t dfifo_top = dwc2_controller->ep_fifo_size/4;
|
|
if (is_dma) {
|
|
dfifo_top -= ghwcfg2.num_host_ch;
|
|
}
|
|
|
|
// fixed allocation for now, improve later:
|
|
// - ptx_largest is limited to 256 for FS since most FS core only has 1024 bytes total
|
|
bool is_highspeed = dwc2_core_is_highspeed(dwc2, TUSB_ROLE_HOST);
|
|
uint32_t nptx_largest = is_highspeed ? TUSB_EPSIZE_BULK_HS/4 : TUSB_EPSIZE_BULK_FS/4;
|
|
uint32_t ptx_largest = is_highspeed ? TUSB_EPSIZE_ISO_HS_MAX/4 : 256/4;
|
|
|
|
uint16_t nptxfsiz = 2 * nptx_largest;
|
|
uint16_t rxfsiz = 2 * (ptx_largest + 2) + ghwcfg2.num_host_ch;
|
|
TU_ASSERT(dfifo_top >= (nptxfsiz + rxfsiz),);
|
|
uint16_t ptxfsiz = dfifo_top - (nptxfsiz + rxfsiz);
|
|
|
|
dwc2->gdfifocfg = (dfifo_top << GDFIFOCFG_EPINFOBASE_SHIFT) | dfifo_top;
|
|
|
|
dfifo_top -= rxfsiz;
|
|
dwc2->grxfsiz = rxfsiz;
|
|
|
|
dfifo_top -= nptxfsiz;
|
|
dwc2->gnptxfsiz = tu_u32_from_u16(nptxfsiz, dfifo_top);
|
|
|
|
dfifo_top -= ptxfsiz;
|
|
dwc2->hptxfsiz = tu_u32_from_u16(ptxfsiz, dfifo_top);
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Controller API
|
|
//--------------------------------------------------------------------+
|
|
|
|
// optional hcd configuration, called by tuh_configure()
|
|
bool hcd_configure(uint8_t rhport, uint32_t cfg_id, const void* cfg_param) {
|
|
(void) rhport;
|
|
(void) cfg_id;
|
|
(void) cfg_param;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Initialize controller to host mode
|
|
bool hcd_init(uint8_t rhport, const tusb_rhport_init_t* rh_init) {
|
|
(void) rh_init;
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
|
|
tu_memclr(&_hcd_data, sizeof(_hcd_data));
|
|
|
|
// Core Initialization
|
|
const bool is_highspeed = dwc2_core_is_highspeed(dwc2, TUSB_ROLE_HOST);
|
|
const bool is_dma = dma_host_enabled(dwc2);
|
|
TU_ASSERT(dwc2_core_init(rhport, is_highspeed, is_dma));
|
|
|
|
//------------- 3.1 Host Initialization -------------//
|
|
|
|
// work at max supported speed
|
|
dwc2->hcfg &= ~HCFG_FSLS_ONLY;
|
|
|
|
// Enable HFIR reload
|
|
if (dwc2->gsnpsid >= DWC2_CORE_REV_2_92a) {
|
|
dwc2->hfir |= HFIR_RELOAD_CTRL;
|
|
}
|
|
|
|
// force host mode and wait for mode switch
|
|
dwc2->gusbcfg = (dwc2->gusbcfg & ~GUSBCFG_FDMOD) | GUSBCFG_FHMOD;
|
|
while ((dwc2->gintsts & GINTSTS_CMOD) != GINTSTS_CMODE_HOST) {}
|
|
|
|
// configure fixed-allocated fifo scheme
|
|
dfifo_host_init(rhport);
|
|
|
|
dwc2->hprt = HPRT_W1_MASK; // clear all write-1-clear bits
|
|
dwc2->hprt = HPRT_POWER; // turn on VBUS
|
|
|
|
// Enable required interrupts
|
|
dwc2->gintmsk |= GINTSTS_OTGINT | GINTSTS_CONIDSTSCHNG | GINTSTS_HPRTINT | GINTSTS_HCINT | GINTSTS_DISCINT;
|
|
|
|
// NPTX can hold at least 2 packet, change interrupt level to half-empty
|
|
uint32_t gahbcfg = dwc2->gahbcfg & ~GAHBCFG_TX_FIFO_EPMTY_LVL;
|
|
gahbcfg |= GAHBCFG_GINT; // Enable global interrupt
|
|
dwc2->gahbcfg = gahbcfg;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Enable USB interrupt
|
|
void hcd_int_enable (uint8_t rhport) {
|
|
dwc2_int_set(rhport, TUSB_ROLE_HOST, true);
|
|
}
|
|
|
|
// Disable USB interrupt
|
|
void hcd_int_disable(uint8_t rhport) {
|
|
dwc2_int_set(rhport, TUSB_ROLE_HOST, false);
|
|
}
|
|
|
|
// Get frame number (1ms)
|
|
uint32_t hcd_frame_number(uint8_t rhport) {
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
return dwc2->hfnum & HFNUM_FRNUM_Msk;
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Port API
|
|
//--------------------------------------------------------------------+
|
|
|
|
// Get the current connect status of roothub port
|
|
bool hcd_port_connect_status(uint8_t rhport) {
|
|
// this is called from enum_new_device() - after the debouncing delays
|
|
if (_hcd_data.attach_debounce) {
|
|
_hcd_data.attach_debounce = false; // allow new attach events again
|
|
}
|
|
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
return dwc2->hprt & HPRT_CONN_STATUS;
|
|
}
|
|
|
|
// Reset USB bus on the port. Return immediately, bus reset sequence may not be complete.
|
|
// Some port would require hcd_port_reset_end() to be invoked after 10ms to complete the reset sequence.
|
|
void hcd_port_reset(uint8_t rhport) {
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
uint32_t hprt = dwc2->hprt & ~HPRT_W1_MASK;
|
|
hprt |= HPRT_RESET;
|
|
dwc2->hprt = hprt;
|
|
}
|
|
|
|
// Complete bus reset sequence, may be required by some controllers
|
|
void hcd_port_reset_end(uint8_t rhport) {
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
uint32_t hprt = dwc2->hprt & ~HPRT_W1_MASK; // skip w1c bits
|
|
hprt &= ~HPRT_RESET;
|
|
dwc2->hprt = hprt;
|
|
}
|
|
|
|
// Get port link speed
|
|
tusb_speed_t hcd_port_speed_get(uint8_t rhport) {
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
const tusb_speed_t speed = hprt_speed_get(dwc2);
|
|
return speed;
|
|
}
|
|
|
|
// HCD closes all opened endpoints belong to this device
|
|
void hcd_device_close(uint8_t rhport, uint8_t dev_addr) {
|
|
(void) rhport;
|
|
for (uint8_t i = 0; i < (uint8_t) CFG_TUH_DWC2_ENDPOINT_MAX; i++) {
|
|
hcd_endpoint_t* edpt = &_hcd_data.edpt[i];
|
|
if (edpt->hcchar_bm.enable && edpt->hcchar_bm.dev_addr == dev_addr) {
|
|
tu_memclr(edpt, sizeof(hcd_endpoint_t));
|
|
}
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Endpoints API
|
|
//--------------------------------------------------------------------+
|
|
|
|
// Open an endpoint
|
|
bool hcd_edpt_open(uint8_t rhport, uint8_t dev_addr, const tusb_desc_endpoint_t* desc_ep) {
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
const tusb_speed_t rh_speed = hprt_speed_get(dwc2);
|
|
|
|
tuh_bus_info_t bus_info;
|
|
tuh_bus_info_get(dev_addr, &bus_info);
|
|
|
|
// find a free endpoint
|
|
const uint8_t ep_id = edpt_alloc();
|
|
TU_ASSERT(ep_id < CFG_TUH_DWC2_ENDPOINT_MAX);
|
|
hcd_endpoint_t* edpt = &_hcd_data.edpt[ep_id];
|
|
|
|
dwc2_channel_char_t* hcchar_bm = &edpt->hcchar_bm;
|
|
hcchar_bm->ep_size = tu_edpt_packet_size(desc_ep);
|
|
hcchar_bm->ep_num = tu_edpt_number(desc_ep->bEndpointAddress);
|
|
hcchar_bm->ep_dir = tu_edpt_dir(desc_ep->bEndpointAddress);
|
|
hcchar_bm->low_speed_dev = (bus_info.speed == TUSB_SPEED_LOW) ? 1 : 0;
|
|
hcchar_bm->ep_type = desc_ep->bmAttributes.xfer; // ep_type matches TUSB_XFER_*
|
|
hcchar_bm->err_multi_count = 0;
|
|
hcchar_bm->dev_addr = dev_addr;
|
|
hcchar_bm->odd_frame = 0;
|
|
hcchar_bm->disable = 0;
|
|
hcchar_bm->enable = 1;
|
|
|
|
dwc2_channel_split_t* hcsplt_bm = &edpt->hcsplt_bm;
|
|
hcsplt_bm->hub_port = bus_info.hub_port;
|
|
hcsplt_bm->hub_addr = bus_info.hub_addr;
|
|
hcsplt_bm->xact_pos = 0;
|
|
hcsplt_bm->split_compl = 0;
|
|
hcsplt_bm->split_en = (rh_speed == TUSB_SPEED_HIGH && bus_info.speed != TUSB_SPEED_HIGH) ? 1 : 0;
|
|
|
|
edpt->speed = bus_info.speed;
|
|
edpt->next_pid = HCTSIZ_PID_DATA0;
|
|
if (desc_ep->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS) {
|
|
edpt->uframe_interval = 1 << (desc_ep->bInterval - 1);
|
|
if (bus_info.speed == TUSB_SPEED_FULL) {
|
|
edpt->uframe_interval <<= 3;
|
|
}
|
|
} else if (desc_ep->bmAttributes.xfer == TUSB_XFER_INTERRUPT) {
|
|
if (bus_info.speed == TUSB_SPEED_HIGH) {
|
|
edpt->uframe_interval = 1 << (desc_ep->bInterval - 1);
|
|
} else {
|
|
edpt->uframe_interval = desc_ep->bInterval << 3;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool hcd_edpt_close(uint8_t rhport, uint8_t daddr, uint8_t ep_addr) {
|
|
(void) rhport; (void) daddr; (void) ep_addr;
|
|
return false; // TODO not implemented yet
|
|
}
|
|
|
|
// clean up channel after part of transfer is done but the whole urb is not complete
|
|
static void channel_xfer_out_wrapup(dwc2_regs_t* dwc2, uint8_t ch_id) {
|
|
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
|
|
const dwc2_channel_t* channel = &dwc2->channel[ch_id];
|
|
hcd_endpoint_t* edpt = &_hcd_data.edpt[xfer->ep_id];
|
|
|
|
const dwc2_channel_tsize_t hctsiz = {.value = channel->hctsiz};
|
|
edpt->next_pid = hctsiz.pid; // save PID
|
|
|
|
/* Since hctsiz.xfersize field reflects the number of bytes transferred via the AHB, not the USB)
|
|
* For IN: we can use hctsiz.xfersize as remaining bytes.
|
|
* For OUT: Must use the hctsiz.pktcnt field to determine how much data has been transferred. This field reflects the
|
|
* number of packets that have been transferred via the USB. This is always an integral number of packets if the
|
|
* transfer was halted before its normal completion.
|
|
*/
|
|
const uint16_t remain_packets = hctsiz.packet_count;
|
|
const dwc2_channel_char_t hcchar = {.value = channel->hcchar};
|
|
const uint16_t total_packets = cal_packet_count(edpt->buflen, hcchar.ep_size);
|
|
const uint16_t actual_bytes = (total_packets - remain_packets) * hcchar.ep_size;
|
|
|
|
xfer->fifo_bytes = 0;
|
|
xfer->xferred_bytes += actual_bytes;
|
|
edpt->buffer += actual_bytes;
|
|
edpt->buflen -= actual_bytes;
|
|
}
|
|
|
|
static bool channel_xfer_start(dwc2_regs_t* dwc2, uint8_t ch_id) {
|
|
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
|
|
hcd_endpoint_t* edpt = &_hcd_data.edpt[xfer->ep_id];
|
|
dwc2_channel_char_t* hcchar_bm = &edpt->hcchar_bm;
|
|
dwc2_channel_t* channel = &dwc2->channel[ch_id];
|
|
bool const is_period = channel_is_periodic(edpt->hcchar);
|
|
|
|
// clear previous state
|
|
xfer->fifo_bytes = 0;
|
|
|
|
// hchar: restore but don't enable yet
|
|
if (is_period) {
|
|
hcchar_bm->odd_frame = 1 - (dwc2->hfnum & 1); // transfer on next frame
|
|
}
|
|
channel->hcchar = (edpt->hcchar & ~HCCHAR_CHENA);
|
|
|
|
// hctsiz: zero length packet still count as 1
|
|
const uint16_t packet_count = cal_packet_count(edpt->buflen, hcchar_bm->ep_size);
|
|
dwc2_channel_tsize_t hctsiz = {.value = 0};
|
|
hctsiz.pid = edpt->next_pid; // next PID is set in transfer complete interrupt
|
|
hctsiz.packet_count = packet_count;
|
|
hctsiz.xfer_size = edpt->buflen;
|
|
if (edpt->next_do_ping && edpt->speed == TUSB_SPEED_HIGH &&
|
|
edpt->next_pid != HCTSIZ_PID_SETUP && hcchar_bm->ep_dir == TUSB_DIR_OUT) {
|
|
hctsiz.do_ping = 1;
|
|
}
|
|
channel->hctsiz = hctsiz.value;
|
|
edpt->next_do_ping = 0;
|
|
|
|
// pre-calculate next PID based on packet count, adjusted in transfer complete interrupt if short packet
|
|
if (hcchar_bm->ep_num == 0) {
|
|
edpt->next_pid = HCTSIZ_PID_DATA1; // control data and status stage always start with DATA1
|
|
} else {
|
|
edpt->next_pid = cal_next_pid(edpt->next_pid, packet_count);
|
|
}
|
|
|
|
channel->hcsplt = edpt->hcsplt;
|
|
channel->hcint = 0xFFFFFFFFU; // clear all channel interrupts
|
|
|
|
if (dma_host_enabled(dwc2)) {
|
|
uint32_t hcintmsk = HCINT_HALTED;
|
|
channel->hcintmsk = hcintmsk;
|
|
dwc2->haintmsk |= TU_BIT(ch_id);
|
|
|
|
channel->hcdma = (uint32_t) edpt->buffer;
|
|
|
|
if (hcchar_bm->ep_dir == TUSB_DIR_IN) {
|
|
channel_send_in_token(dwc2, channel);
|
|
} else {
|
|
hcd_dcache_clean(edpt->buffer, edpt->buflen);
|
|
channel->hcchar |= HCCHAR_CHENA;
|
|
}
|
|
} else {
|
|
uint32_t hcintmsk = HCINT_NAK | HCINT_XACT_ERR | HCINT_STALL | HCINT_XFER_COMPLETE | HCINT_DATATOGGLE_ERR;
|
|
if (hcchar_bm->ep_dir == TUSB_DIR_IN) {
|
|
hcintmsk |= HCINT_BABBLE_ERR | HCINT_DATATOGGLE_ERR | HCINT_ACK;
|
|
} else {
|
|
hcintmsk |= HCINT_NYET;
|
|
if (edpt->hcsplt_bm.split_en || hctsiz.do_ping) {
|
|
hcintmsk |= HCINT_ACK;
|
|
}
|
|
}
|
|
channel->hcintmsk = hcintmsk;
|
|
dwc2->haintmsk |= TU_BIT(ch_id);
|
|
|
|
// enable channel for slave mode:
|
|
// - OUT: it will enable corresponding FIFO channel
|
|
// - IN : it will write an IN request to the Non-periodic Request Queue, this will have dwc2 trying to send
|
|
// IN Token. If we got NAK, we have to re-enable the channel again in the interrupt. Due to the way usbh stack only
|
|
// call hcd_edpt_xfer() once, we will need to manage de-allocate/re-allocate IN channel dynamically.
|
|
if (hcchar_bm->ep_dir == TUSB_DIR_IN) {
|
|
channel_send_in_token(dwc2, channel);
|
|
} else {
|
|
channel->hcchar |= HCCHAR_CHENA;
|
|
if (edpt->buflen > 0) {
|
|
// To prevent conflict with other channel, we will enable periodic/non-periodic FIFO empty interrupt accordingly
|
|
// And write packet in the interrupt handler
|
|
dwc2->gintmsk |= (is_period ? GINTSTS_PTX_FIFO_EMPTY : GINTSTS_NPTX_FIFO_EMPTY);
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// kick-off transfer with an endpoint
|
|
static bool edpt_xfer_kickoff(dwc2_regs_t* dwc2, uint8_t ep_id) {
|
|
uint8_t ch_id = channel_alloc(dwc2);
|
|
TU_ASSERT(ch_id < 16); // all channel are in used
|
|
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
|
|
xfer->ep_id = ep_id;
|
|
xfer->result = XFER_RESULT_INVALID;
|
|
|
|
return channel_xfer_start(dwc2, ch_id);
|
|
}
|
|
|
|
// Submit a transfer, when complete hcd_event_xfer_complete() must be invoked
|
|
bool hcd_edpt_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr, uint8_t * buffer, uint16_t buflen) {
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
const uint8_t ep_num = tu_edpt_number(ep_addr);
|
|
const uint8_t ep_dir = tu_edpt_dir(ep_addr);
|
|
|
|
uint8_t ep_id = edpt_find_opened(dev_addr, ep_num, ep_dir);
|
|
TU_ASSERT(ep_id < CFG_TUH_DWC2_ENDPOINT_MAX);
|
|
hcd_endpoint_t* edpt = &_hcd_data.edpt[ep_id];
|
|
|
|
edpt->buffer = buffer;
|
|
edpt->buflen = buflen;
|
|
|
|
if (ep_num == 0) {
|
|
// update ep_dir since control endpoint can switch direction
|
|
edpt->hcchar_bm.ep_dir = ep_dir;
|
|
}
|
|
|
|
return edpt_xfer_kickoff(dwc2, ep_id);
|
|
}
|
|
|
|
// Abort a queued transfer. Note: it can only abort transfer that has not been started
|
|
// Return true if a queued transfer is aborted, false if there is no transfer to abort
|
|
bool hcd_edpt_abort_xfer(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
const uint8_t ep_num = tu_edpt_number(ep_addr);
|
|
const uint8_t ep_dir = tu_edpt_dir(ep_addr);
|
|
const uint8_t ep_id = edpt_find_opened(dev_addr, ep_num, ep_dir);
|
|
TU_VERIFY(ep_id < CFG_TUH_DWC2_ENDPOINT_MAX);
|
|
|
|
// hcd_int_disable(rhport);
|
|
|
|
// Find enabled channeled and disable it, channel will be de-allocated in the interrupt handler
|
|
const uint8_t ch_id = channel_find_enabled(dwc2, dev_addr, ep_num, ep_dir);
|
|
if (ch_id < 16) {
|
|
dwc2_channel_t* channel = &dwc2->channel[ch_id];
|
|
channel_disable(dwc2, channel);
|
|
}
|
|
|
|
// hcd_int_enable(rhport);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Submit a special transfer to send 8-byte Setup Packet, when complete hcd_event_xfer_complete() must be invoked
|
|
bool hcd_setup_send(uint8_t rhport, uint8_t dev_addr, const uint8_t setup_packet[8]) {
|
|
uint8_t ep_id = edpt_find_opened(dev_addr, 0, TUSB_DIR_OUT);
|
|
TU_ASSERT(ep_id < CFG_TUH_DWC2_ENDPOINT_MAX); // no opened endpoint
|
|
hcd_endpoint_t* edpt = &_hcd_data.edpt[ep_id];
|
|
edpt->next_pid = HCTSIZ_PID_SETUP;
|
|
|
|
return hcd_edpt_xfer(rhport, dev_addr, 0, (uint8_t*)(uintptr_t) setup_packet, 8);
|
|
}
|
|
|
|
// clear stall, data toggle is also reset to DATA0
|
|
bool hcd_edpt_clear_stall(uint8_t rhport, uint8_t dev_addr, uint8_t ep_addr) {
|
|
(void) rhport;
|
|
const uint8_t ep_num = tu_edpt_number(ep_addr);
|
|
const uint8_t ep_dir = tu_edpt_dir(ep_addr);
|
|
const uint8_t ep_id = edpt_find_opened(dev_addr, ep_num, ep_dir);
|
|
TU_VERIFY(ep_id < CFG_TUH_DWC2_ENDPOINT_MAX);
|
|
hcd_endpoint_t* edpt = &_hcd_data.edpt[ep_id];
|
|
|
|
edpt->next_pid = HCTSIZ_PID_DATA0;
|
|
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------
|
|
// HCD Event Handler
|
|
//--------------------------------------------------------------------
|
|
|
|
// retry an IN transfer, channel must be halted
|
|
static void channel_xfer_in_retry(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t hcint) {
|
|
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
|
|
hcd_endpoint_t* edpt = &_hcd_data.edpt[xfer->ep_id];
|
|
dwc2_channel_t* channel = &dwc2->channel[ch_id];
|
|
dwc2_channel_char_t hcchar = {.value = channel->hcchar};
|
|
|
|
if (channel_is_periodic(hcchar.value)){
|
|
const dwc2_channel_split_t hcsplt = {.value = channel->hcsplt};
|
|
// retry immediately for periodic split NYET if we haven't reach max retry
|
|
if (hcsplt.split_en && hcsplt.split_compl && (hcint & HCINT_NYET || xfer->halted_nyet)) {
|
|
xfer->period_split_nyet_count++;
|
|
xfer->halted_nyet = 0;
|
|
if (xfer->period_split_nyet_count < HCD_XFER_PERIOD_SPLIT_NYET_MAX) {
|
|
hcchar.odd_frame = 1 - (dwc2->hfnum & 1); // transfer on next frame
|
|
channel->hcchar = hcchar.value;
|
|
channel_send_in_token(dwc2, channel);
|
|
return;
|
|
} else {
|
|
// too many NYET, de-allocate channel with below code
|
|
xfer->period_split_nyet_count = 0;
|
|
}
|
|
}
|
|
|
|
const uint32_t ucount = (hprt_speed_get(dwc2) == TUSB_SPEED_HIGH ? 1 : 8);
|
|
if (edpt->uframe_interval == ucount) {
|
|
// retry on next frame if bInterval is 1
|
|
hcchar.odd_frame = 1 - (dwc2->hfnum & 1);
|
|
channel->hcchar = hcchar.value;
|
|
channel_send_in_token(dwc2, channel);
|
|
} else {
|
|
// otherwise, de-allocate channel, enable SOF set frame counter for later transfer
|
|
const dwc2_channel_tsize_t hctsiz = {.value = channel->hctsiz};
|
|
edpt->next_pid = hctsiz.pid; // save PID
|
|
edpt->uframe_countdown = edpt->uframe_interval - ucount;
|
|
// enable SOF interrupt if not already enabled
|
|
if (!(dwc2->gintmsk & GINTMSK_SOFM)) {
|
|
dwc2->gintsts = GINTSTS_SOF;
|
|
dwc2->gintmsk |= GINTMSK_SOFM;
|
|
}
|
|
// already halted, de-allocate channel (called from DMA isr)
|
|
channel_dealloc(dwc2, ch_id);
|
|
}
|
|
} else {
|
|
// for control/bulk: retry immediately
|
|
channel_send_in_token(dwc2, channel);
|
|
}
|
|
}
|
|
|
|
#if CFG_TUSB_DEBUG
|
|
TU_ATTR_ALWAYS_INLINE static inline void print_hcint(uint32_t hcint) {
|
|
const char* str[] = {
|
|
"XFRC", "HALTED", "AHBERR", "STALL",
|
|
"NAK", "ACK", "NYET", "XERR",
|
|
"BBLERR", "FRMOR", "DTERR", "BNA",
|
|
"XCSERR", "DESC_LST"
|
|
};
|
|
|
|
for(uint32_t i=0; i<14; i++) {
|
|
if (hcint & TU_BIT(i)) {
|
|
TU_LOG1("%s ", str[i]);
|
|
}
|
|
}
|
|
TU_LOG1("\r\n");
|
|
}
|
|
#endif
|
|
|
|
#if CFG_TUH_DWC2_SLAVE_ENABLE
|
|
static void handle_rxflvl_irq(uint8_t rhport) {
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
|
|
// Pop control word off FIFO
|
|
const dwc2_grxstsp_t grxstsp = {.value= dwc2->grxstsp};
|
|
const uint8_t ch_id = grxstsp.ep_ch_num;
|
|
|
|
switch (grxstsp.packet_status) {
|
|
case GRXSTS_PKTSTS_RX_DATA: {
|
|
// In packet received, pop this entry --> ACK interrupt
|
|
const uint16_t byte_count = grxstsp.byte_count;
|
|
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
|
|
TU_ASSERT(xfer->ep_id < CFG_TUH_DWC2_ENDPOINT_MAX,);
|
|
hcd_endpoint_t* edpt = &_hcd_data.edpt[xfer->ep_id];
|
|
|
|
if (byte_count) {
|
|
dfifo_read_packet(dwc2, edpt->buffer + xfer->xferred_bytes, byte_count);
|
|
xfer->xferred_bytes += byte_count;
|
|
xfer->fifo_bytes = byte_count;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case GRXSTS_PKTSTS_RX_COMPLETE:
|
|
// In transfer complete: After this entry is popped from the rx FIFO, dwc2 asserts a Transfer Completed
|
|
// interrupt --> handle_channel_irq()
|
|
break;
|
|
|
|
case GRXSTS_PKTSTS_HOST_DATATOGGLE_ERR:
|
|
TU_ASSERT(0, ); // maybe try to change DToggle
|
|
break;
|
|
|
|
case GRXSTS_PKTSTS_HOST_CHANNEL_HALTED:
|
|
// triggered when channel.hcchar_bm.disable is set
|
|
// TODO handle later
|
|
break;
|
|
|
|
default: break; // ignore other status
|
|
}
|
|
}
|
|
|
|
// return true if there is still pending data and need more ISR
|
|
static bool handle_txfifo_empty(dwc2_regs_t* dwc2, bool is_periodic) {
|
|
// Use period txsts for both p/np to get request queue space available (1-bit difference, it is small enough)
|
|
const dwc2_hptxsts_t txsts = {.value = (is_periodic ? dwc2->hptxsts : dwc2->hnptxsts)};
|
|
|
|
const uint8_t max_channel = dwc2_channel_count(dwc2);
|
|
for (uint8_t ch_id = 0; ch_id < max_channel; ch_id++) {
|
|
dwc2_channel_t* channel = &dwc2->channel[ch_id];
|
|
const dwc2_channel_char_t hcchar = {.value = channel->hcchar};
|
|
// skip writing to FIFO if channel is expecting halted.
|
|
if (!(channel->hcintmsk & HCINT_HALTED) && (hcchar.ep_dir == TUSB_DIR_OUT)) {
|
|
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
|
|
TU_ASSERT(xfer->ep_id < CFG_TUH_DWC2_ENDPOINT_MAX);
|
|
hcd_endpoint_t* edpt = &_hcd_data.edpt[xfer->ep_id];
|
|
const dwc2_channel_tsize_t hctsiz = {.value = channel->hctsiz};
|
|
const uint16_t remain_packets = hctsiz.packet_count;
|
|
for (uint16_t i = 0; i < remain_packets; i++) {
|
|
const uint16_t remain_bytes = edpt->buflen - xfer->fifo_bytes;
|
|
const uint16_t xact_bytes = tu_min16(remain_bytes, hcchar.ep_size);
|
|
|
|
// skip if there is not enough space in FIFO and RequestQueue.
|
|
// Packet's last word written to FIFO will trigger a request queue
|
|
if ((xact_bytes > (txsts.fifo_available << 2)) || (txsts.req_queue_available == 0)) {
|
|
return true;
|
|
}
|
|
|
|
dfifo_write_packet(dwc2, ch_id, edpt->buffer + xfer->fifo_bytes, xact_bytes);
|
|
xfer->fifo_bytes += xact_bytes;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false; // no channel has pending data
|
|
}
|
|
|
|
static bool handle_channel_in_slave(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t hcint) {
|
|
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
|
|
dwc2_channel_t* channel = &dwc2->channel[ch_id];
|
|
hcd_endpoint_t* edpt = &_hcd_data.edpt[xfer->ep_id];
|
|
dwc2_channel_split_t hcsplt = {.value = channel->hcsplt};
|
|
const dwc2_channel_tsize_t hctsiz = {.value = channel->hctsiz};
|
|
bool is_done = false;
|
|
|
|
// if (hcsplt.split_en) {
|
|
// if (edpt->hcchar_bm.ep_num == 1) {
|
|
// TU_LOG1("Frame %u, ch %u: ep %u, hcint 0x%04lX ", dwc2->hfnum_bm.num, ch_id, hcsplt.ep_num, hcint);
|
|
// print_hcint(hcint);
|
|
// }
|
|
|
|
if (hcint & HCINT_XFER_COMPLETE) {
|
|
if (edpt->hcchar_bm.ep_num != 0) {
|
|
edpt->next_pid = hctsiz.pid; // save pid (already toggled)
|
|
}
|
|
|
|
const uint16_t remain_packets = hctsiz.packet_count;
|
|
if (hcsplt.split_en && remain_packets && xfer->fifo_bytes == edpt->hcchar_bm.ep_size) {
|
|
// Split can only complete 1 transaction (up to 1 packet) at a time, schedule more
|
|
hcsplt.split_compl = 0;
|
|
channel->hcsplt = hcsplt.value;
|
|
} else {
|
|
xfer->result = XFER_RESULT_SUCCESS;
|
|
}
|
|
|
|
channel_disable(dwc2, channel);
|
|
} else if (hcint & (HCINT_XACT_ERR | HCINT_BABBLE_ERR | HCINT_STALL)) {
|
|
if (hcint & HCINT_STALL) {
|
|
xfer->result = XFER_RESULT_STALLED;
|
|
} else if (hcint & HCINT_BABBLE_ERR) {
|
|
xfer->result = XFER_RESULT_FAILED;
|
|
} else if (hcint & HCINT_XACT_ERR) {
|
|
xfer->err_count++;
|
|
channel->hcintmsk |= HCINT_ACK;
|
|
}
|
|
|
|
channel_disable(dwc2, channel);
|
|
} else if (hcint & HCINT_NYET) {
|
|
// restart complete split
|
|
hcsplt.split_compl = 1;
|
|
channel->hcsplt = hcsplt.value;
|
|
xfer->halted_nyet = 1;
|
|
channel_disable(dwc2, channel);
|
|
} else if (hcint & HCINT_NAK) {
|
|
// NAK received, disable channel to flush all posted request and try again
|
|
if (hcsplt.split_en) {
|
|
hcsplt.split_compl = 0; // restart with start-split
|
|
channel->hcsplt = hcsplt.value;
|
|
}
|
|
|
|
channel_disable(dwc2, channel);
|
|
} else if (hcint & HCINT_ACK) {
|
|
xfer->err_count = 0;
|
|
|
|
if (hcsplt.split_en) {
|
|
if (!hcsplt.split_compl) {
|
|
// start split is ACK --> do complete split
|
|
channel->hcintmsk |= HCINT_NYET;
|
|
hcsplt.split_compl = 1;
|
|
channel->hcsplt = hcsplt.value;
|
|
channel_send_in_token(dwc2, channel);
|
|
} else {
|
|
// do nothing for complete split with DATA, this will trigger XferComplete and handled there
|
|
}
|
|
} else {
|
|
// ACK with data
|
|
const uint16_t remain_packets = hctsiz.packet_count;
|
|
if (remain_packets) {
|
|
// still more packet to receive, also reset to start split
|
|
hcsplt.split_compl = 0;
|
|
channel->hcsplt = hcsplt.value;
|
|
channel_send_in_token(dwc2, channel);
|
|
}
|
|
}
|
|
} else if (hcint & HCINT_HALTED) {
|
|
channel->hcintmsk &= ~HCINT_HALTED;
|
|
if (xfer->result != XFER_RESULT_INVALID) {
|
|
is_done = true;
|
|
} else if (xfer->err_count == HCD_XFER_ERROR_MAX) {
|
|
xfer->result = XFER_RESULT_FAILED;
|
|
is_done = true;
|
|
} else {
|
|
// got here due to NAK or NYET
|
|
channel_xfer_in_retry(dwc2, ch_id, hcint);
|
|
}
|
|
} else if (hcint & HCINT_DATATOGGLE_ERR) {
|
|
xfer->err_count = 0;
|
|
TU_ASSERT(false);
|
|
}
|
|
return is_done;
|
|
}
|
|
|
|
static bool handle_channel_out_slave(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t hcint) {
|
|
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
|
|
dwc2_channel_t* channel = &dwc2->channel[ch_id];
|
|
hcd_endpoint_t* edpt = &_hcd_data.edpt[xfer->ep_id];
|
|
dwc2_channel_split_t hcsplt = {.value = channel->hcsplt};
|
|
bool is_done = false;
|
|
|
|
if (hcint & HCINT_XFER_COMPLETE) {
|
|
is_done = true;
|
|
xfer->result = XFER_RESULT_SUCCESS;
|
|
channel->hcintmsk &= ~HCINT_ACK;
|
|
if (hcint & HCINT_NYET) {
|
|
// complete transfer with NYET, do ping next time
|
|
edpt->next_do_ping = 1;
|
|
}
|
|
} else if (hcint & HCINT_STALL) {
|
|
xfer->result = XFER_RESULT_STALLED;
|
|
channel_disable(dwc2, channel);
|
|
} else if (hcint & HCINT_NYET) {
|
|
xfer->err_count = 0;
|
|
if (hcsplt.split_en) {
|
|
// retry complete split
|
|
hcsplt.split_compl = 1;
|
|
channel->hcsplt = hcsplt.value;
|
|
channel->hcchar |= HCCHAR_CHENA;
|
|
} else {
|
|
edpt->next_do_ping = 1;
|
|
channel_xfer_out_wrapup(dwc2, ch_id);
|
|
channel_disable(dwc2, channel);
|
|
}
|
|
} else if (hcint & (HCINT_NAK | HCINT_XACT_ERR)) {
|
|
// clean up transfer so far, disable and start again later
|
|
channel_xfer_out_wrapup(dwc2, ch_id);
|
|
channel_disable(dwc2, channel);
|
|
if (hcint & HCINT_XACT_ERR) {
|
|
xfer->err_count++;
|
|
channel->hcintmsk |= HCINT_ACK;
|
|
} else {
|
|
// NAK disable channel to flush all posted request and try again
|
|
edpt->next_do_ping = 1;
|
|
xfer->err_count = 0;
|
|
}
|
|
} else if (hcint & HCINT_HALTED) {
|
|
channel->hcintmsk &= ~HCINT_HALTED;
|
|
if (xfer->result != XFER_RESULT_INVALID) {
|
|
is_done = true;
|
|
} else if (xfer->err_count == HCD_XFER_ERROR_MAX) {
|
|
xfer->result = XFER_RESULT_FAILED;
|
|
is_done = true;
|
|
} else {
|
|
// Got here due to NAK or NYET
|
|
TU_ASSERT(channel_xfer_start(dwc2, ch_id));
|
|
}
|
|
} else if (hcint & HCINT_ACK) {
|
|
xfer->err_count = 0;
|
|
channel->hcintmsk &= ~HCINT_ACK;
|
|
if (hcsplt.split_en) {
|
|
if (!hcsplt.split_compl) {
|
|
// ACK for start split --> do complete split
|
|
hcsplt.split_compl = 1;
|
|
channel->hcsplt = hcsplt.value;
|
|
channel->hcchar |= HCCHAR_CHENA;
|
|
}
|
|
} else {
|
|
// ACK interrupt is only enabled for Split and PING
|
|
// ACK for PING, which mean device is ready to receive data
|
|
channel->hctsiz &= ~HCTSIZ_DOPING; // HC already cleared PING bit, but we clear anyway
|
|
channel->hcchar |= HCCHAR_CHENA;
|
|
}
|
|
}
|
|
|
|
if (is_done) {
|
|
xfer->xferred_bytes += xfer->fifo_bytes;
|
|
xfer->fifo_bytes = 0;
|
|
}
|
|
|
|
return is_done;
|
|
}
|
|
#endif
|
|
|
|
#if CFG_TUH_DWC2_DMA_ENABLE
|
|
static bool handle_channel_in_dma(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t hcint) {
|
|
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
|
|
dwc2_channel_t* channel = &dwc2->channel[ch_id];
|
|
hcd_endpoint_t* edpt = &_hcd_data.edpt[xfer->ep_id];
|
|
dwc2_channel_char_t hcchar = {.value = channel->hcchar};
|
|
dwc2_channel_split_t hcsplt = {.value = channel->hcsplt};
|
|
const dwc2_channel_tsize_t hctsiz = {.value = channel->hctsiz};
|
|
|
|
bool is_done = false;
|
|
|
|
// TU_LOG1("in hcint = %02lX\r\n", hcint);
|
|
|
|
if (hcint & HCINT_HALTED) {
|
|
if (hcint & (HCINT_XFER_COMPLETE | HCINT_STALL | HCINT_BABBLE_ERR)) {
|
|
const uint16_t remain_bytes = (uint16_t) hctsiz.xfer_size;
|
|
const uint16_t remain_packets = hctsiz.packet_count;
|
|
const uint16_t actual_len = edpt->buflen - remain_bytes;
|
|
xfer->xferred_bytes += actual_len;
|
|
|
|
is_done = true;
|
|
|
|
if (hcint & HCINT_STALL) {
|
|
xfer->result = XFER_RESULT_STALLED;
|
|
} else if (hcint & HCINT_BABBLE_ERR) {
|
|
xfer->result = XFER_RESULT_FAILED;
|
|
} else if (hcsplt.split_en && remain_packets && actual_len == hcchar.ep_size) {
|
|
// Split can only complete 1 transaction (up to 1 packet) at a time, schedule more
|
|
is_done = false;
|
|
edpt->buffer += actual_len;
|
|
edpt->buflen -= actual_len;
|
|
|
|
hcsplt.split_compl = 0;
|
|
channel->hcsplt = hcsplt.value;
|
|
channel_xfer_in_retry(dwc2, ch_id, hcint);
|
|
} else {
|
|
xfer->result = XFER_RESULT_SUCCESS;
|
|
}
|
|
|
|
xfer->err_count = 0;
|
|
channel->hcintmsk &= ~HCINT_ACK;
|
|
} else if (hcint & HCINT_XACT_ERR) {
|
|
xfer->err_count++;
|
|
if (xfer->err_count >= HCD_XFER_ERROR_MAX) {
|
|
is_done = true;
|
|
xfer->result = XFER_RESULT_FAILED;
|
|
} else {
|
|
channel->hcintmsk |= HCINT_ACK | HCINT_NAK | HCINT_DATATOGGLE_ERR;
|
|
hcsplt.split_compl = 0;
|
|
channel->hcsplt = hcsplt.value;
|
|
channel_xfer_in_retry(dwc2, ch_id, hcint);
|
|
}
|
|
} else if (hcint & HCINT_NYET) {
|
|
// Must handle nyet before nak or ack. Could get a nyet at the same time as either of those on a BULK/CONTROL
|
|
// OUT that started with a PING. The nyet takes precedence.
|
|
if (hcsplt.split_en) {
|
|
// split not yet mean hub has no data, retry complete split
|
|
hcsplt.split_compl = 1;
|
|
channel->hcsplt = hcsplt.value;
|
|
channel_xfer_in_retry(dwc2, ch_id, hcint);
|
|
}
|
|
} else if (hcint & HCINT_ACK) {
|
|
xfer->err_count = 0;
|
|
channel->hcintmsk &= ~HCINT_ACK;
|
|
if (hcsplt.split_en) {
|
|
// start split is ACK --> do complete split
|
|
// TODO: for ISO must use xact_pos to plan complete split based on microframe (up to 187.5 bytes/uframe)
|
|
hcsplt.split_compl = 1;
|
|
channel->hcsplt = hcsplt.value;
|
|
if (channel_is_periodic(channel->hcchar)) {
|
|
hcchar.odd_frame = 1 - (dwc2->hfnum & 1); // transfer on next frame
|
|
channel->hcchar = hcchar.value;
|
|
}
|
|
channel_send_in_token(dwc2, channel);
|
|
}
|
|
} else if (hcint & (HCINT_NAK | HCINT_DATATOGGLE_ERR)) {
|
|
xfer->err_count = 0;
|
|
channel->hcintmsk &= ~(HCINT_NAK | HCINT_DATATOGGLE_ERR);
|
|
hcsplt.split_compl = 0; // restart with start-split
|
|
channel->hcsplt = hcsplt.value;
|
|
channel_xfer_in_retry(dwc2, ch_id, hcint);
|
|
} else if (hcint & HCINT_FARME_OVERRUN) {
|
|
// retry start-split in next binterval
|
|
channel_xfer_in_retry(dwc2, ch_id, hcint);
|
|
}
|
|
}
|
|
|
|
return is_done;
|
|
}
|
|
|
|
static bool handle_channel_out_dma(dwc2_regs_t* dwc2, uint8_t ch_id, uint32_t hcint) {
|
|
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
|
|
dwc2_channel_t* channel = &dwc2->channel[ch_id];
|
|
hcd_endpoint_t* edpt = &_hcd_data.edpt[xfer->ep_id];
|
|
const dwc2_channel_char_t hcchar = {.value = channel->hcchar};
|
|
dwc2_channel_split_t hcsplt = {.value = channel->hcsplt};
|
|
|
|
bool is_done = false;
|
|
|
|
// TU_LOG1("out hcint = %02lX\r\n", hcint);
|
|
|
|
if (hcint & HCINT_HALTED) {
|
|
if (hcint & (HCINT_XFER_COMPLETE | HCINT_STALL)) {
|
|
is_done = true;
|
|
xfer->err_count = 0;
|
|
if (hcint & HCINT_XFER_COMPLETE) {
|
|
xfer->result = XFER_RESULT_SUCCESS;
|
|
xfer->xferred_bytes += edpt->buflen;
|
|
} else {
|
|
xfer->result = XFER_RESULT_STALLED;
|
|
channel_xfer_out_wrapup(dwc2, ch_id);
|
|
}
|
|
channel->hcintmsk &= ~HCINT_ACK;
|
|
} else if (hcint & HCINT_XACT_ERR) {
|
|
if (hcint & (HCINT_NAK | HCINT_NYET | HCINT_ACK)) {
|
|
xfer->err_count = 0;
|
|
// clean up transfer so far and start again
|
|
channel_xfer_out_wrapup(dwc2, ch_id);
|
|
channel_xfer_start(dwc2, ch_id);
|
|
} else {
|
|
xfer->err_count++;
|
|
if (xfer->err_count >= HCD_XFER_ERROR_MAX) {
|
|
xfer->result = XFER_RESULT_FAILED;
|
|
is_done = true;
|
|
} else {
|
|
// clean up transfer so far and start again
|
|
channel_xfer_out_wrapup(dwc2, ch_id);
|
|
channel_xfer_start(dwc2, ch_id);
|
|
}
|
|
}
|
|
} else if (hcint & HCINT_NYET) {
|
|
if (hcsplt.split_en && hcsplt.split_compl) {
|
|
// split not yet mean hub has no data, retry complete split
|
|
hcsplt.split_compl = 1;
|
|
channel->hcsplt = hcsplt.value;
|
|
channel->hcchar |= HCCHAR_CHENA;
|
|
}
|
|
} else if (hcint & HCINT_ACK) {
|
|
xfer->err_count = 0;
|
|
if (hcsplt.split_en && !hcsplt.split_compl) {
|
|
// start split is ACK --> do complete split
|
|
hcsplt.split_compl = 1;
|
|
channel->hcsplt = hcsplt.value;
|
|
channel->hcchar |= HCCHAR_CHENA;
|
|
}
|
|
}
|
|
} else if (hcint & HCINT_ACK) {
|
|
xfer->err_count = 0;
|
|
channel->hcintmsk &= ~HCINT_ACK;
|
|
}
|
|
|
|
return is_done;
|
|
}
|
|
#endif
|
|
|
|
static void handle_channel_irq(uint8_t rhport, bool in_isr) {
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
const bool is_dma = dma_host_enabled(dwc2);
|
|
const uint8_t max_channel = dwc2_channel_count(dwc2);
|
|
|
|
for (uint8_t ch_id = 0; ch_id < max_channel; ch_id++) {
|
|
if (tu_bit_test(dwc2->haint, ch_id)) {
|
|
dwc2_channel_t* channel = &dwc2->channel[ch_id];
|
|
hcd_xfer_t* xfer = &_hcd_data.xfer[ch_id];
|
|
TU_ASSERT(xfer->ep_id < CFG_TUH_DWC2_ENDPOINT_MAX,);
|
|
dwc2_channel_char_t hcchar = {.value = channel->hcchar};
|
|
|
|
const uint32_t hcint = channel->hcint;
|
|
channel->hcint = hcint; // clear interrupt
|
|
|
|
bool is_done = false;
|
|
if (is_dma) {
|
|
#if CFG_TUH_DWC2_DMA_ENABLE
|
|
if (hcchar.ep_dir == TUSB_DIR_OUT) {
|
|
is_done = handle_channel_out_dma(dwc2, ch_id, hcint);
|
|
} else {
|
|
is_done = handle_channel_in_dma(dwc2, ch_id, hcint);
|
|
if (is_done && (channel->hcdma > xfer->xferred_bytes)) {
|
|
// hcdma is increased by word --> need to align4
|
|
hcd_dcache_invalidate((void*) tu_align4(channel->hcdma - xfer->xferred_bytes), xfer->xferred_bytes);
|
|
}
|
|
}
|
|
#endif
|
|
} else {
|
|
#if CFG_TUH_DWC2_SLAVE_ENABLE
|
|
if (hcchar.ep_dir == TUSB_DIR_OUT) {
|
|
is_done = handle_channel_out_slave(dwc2, ch_id, hcint);
|
|
} else {
|
|
is_done = handle_channel_in_slave(dwc2, ch_id, hcint);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (is_done) {
|
|
const uint8_t ep_addr = tu_edpt_addr(hcchar.ep_num, hcchar.ep_dir);
|
|
hcd_event_xfer_complete(hcchar.dev_addr, ep_addr, xfer->xferred_bytes, (xfer_result_t)xfer->result, in_isr);
|
|
channel_dealloc(dwc2, ch_id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// SOF is enabled for scheduled periodic transfer
|
|
static bool handle_sof_irq(uint8_t rhport, bool in_isr) {
|
|
(void) in_isr;
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
dwc2->gintsts = GINTSTS_SOF; // Clear the SOF interrupt flag
|
|
|
|
bool more_isr = false;
|
|
|
|
// If highspeed then SOF is 125us, else 1ms
|
|
const uint32_t ucount = (hprt_speed_get(dwc2) == TUSB_SPEED_HIGH ? 1 : 8);
|
|
|
|
for(uint8_t ep_id = 0; ep_id < CFG_TUH_DWC2_ENDPOINT_MAX; ep_id++) {
|
|
hcd_endpoint_t* edpt = &_hcd_data.edpt[ep_id];
|
|
if (edpt->hcchar_bm.enable && channel_is_periodic(edpt->hcchar) && edpt->uframe_countdown > 0) {
|
|
edpt->uframe_countdown -= tu_min32(ucount, edpt->uframe_countdown);
|
|
if (edpt->uframe_countdown == 0) {
|
|
if (!edpt_xfer_kickoff(dwc2, ep_id)) {
|
|
edpt->uframe_countdown = ucount; // failed to start, try again next frame
|
|
}
|
|
}
|
|
|
|
more_isr = true;
|
|
}
|
|
}
|
|
|
|
return more_isr;
|
|
}
|
|
|
|
// Config HCFG FS/LS clock and HFIR for SOF interval according to link speed (value is in PHY clock unit)
|
|
static void port0_enable(dwc2_regs_t* dwc2, tusb_speed_t speed) {
|
|
uint32_t hcfg = dwc2->hcfg & ~HCFG_FSLS_PHYCLK_SEL;
|
|
|
|
const dwc2_gusbcfg_t gusbcfg = {.value = dwc2->gusbcfg};
|
|
uint32_t phy_clock;
|
|
|
|
if (gusbcfg.phy_sel) {
|
|
phy_clock = 48; // dedicated FS is 48Mhz
|
|
if (speed == TUSB_SPEED_LOW) {
|
|
hcfg |= HCFG_FSLS_PHYCLK_SEL_6MHZ;
|
|
} else {
|
|
hcfg |= HCFG_FSLS_PHYCLK_SEL_48MHZ;
|
|
}
|
|
} else {
|
|
if (gusbcfg.ulpi_utmi_sel) {
|
|
phy_clock = 60; // ULPI 8-bit is 60Mhz
|
|
} else {
|
|
// UTMI+ 16-bit is 30Mhz, 8-bit is 60Mhz
|
|
phy_clock = gusbcfg.phy_if16 ? 30 : 60;
|
|
|
|
// Enable UTMI+ low power mode 48Mhz external clock if not highspeed
|
|
if (speed == TUSB_SPEED_HIGH) {
|
|
dwc2->gusbcfg &= ~GUSBCFG_PHYLPCS;
|
|
} else {
|
|
dwc2->gusbcfg |= GUSBCFG_PHYLPCS;
|
|
// may need to reset port
|
|
}
|
|
}
|
|
hcfg |= HCFG_FSLS_PHYCLK_SEL_30_60MHZ;
|
|
}
|
|
|
|
dwc2->hcfg = hcfg;
|
|
|
|
uint32_t hfir = dwc2->hfir & ~HFIR_FRIVL_Msk;
|
|
if (speed == TUSB_SPEED_HIGH) {
|
|
hfir |= 125*phy_clock - 1; // The "- 1" is the correct value. The Synopsys databook was corrected in 3.30a
|
|
} else {
|
|
hfir |= 1000*phy_clock - 1;
|
|
}
|
|
|
|
dwc2->hfir = hfir;
|
|
}
|
|
|
|
/* Handle Host Port interrupt, possible source are:
|
|
- Connection Detection
|
|
- Enable Change
|
|
- Over Current Change
|
|
*/
|
|
static void handle_hprt_irq(uint8_t rhport, bool in_isr) {
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
const dwc2_hprt_t hprt_bm = {.value = dwc2->hprt};
|
|
uint32_t hprt = hprt_bm.value & ~HPRT_W1_MASK;
|
|
|
|
if (hprt_bm.conn_detected) {
|
|
// Port Connect Detect
|
|
hprt |= HPRT_CONN_DETECT;
|
|
|
|
if (hprt_bm.conn_status) {
|
|
if (!_hcd_data.attach_debounce) {
|
|
_hcd_data.attach_debounce = true; // block new attach events until the debounce delay is over
|
|
hcd_event_device_attach(rhport, in_isr);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (hprt_bm.enable_change) {
|
|
// Port enable change
|
|
hprt |= HPRT_ENABLE_CHANGE;
|
|
|
|
if (hprt_bm.enable) {
|
|
// Port enable
|
|
const tusb_speed_t speed = hprt_speed_get(dwc2);
|
|
port0_enable(dwc2, speed);
|
|
} else {
|
|
// TU_ASSERT(false, );
|
|
}
|
|
}
|
|
|
|
dwc2->hprt = hprt; // clear interrupt
|
|
}
|
|
|
|
/* Interrupt Hierarchy
|
|
HCINTn HPRT
|
|
| |
|
|
HAINT.CHn |
|
|
| |
|
|
GINTSTS : HCInt | PrtInt | NPTxFEmp | PTxFEmpp | RXFLVL | SOF
|
|
*/
|
|
void hcd_int_handler(uint8_t rhport, bool in_isr) {
|
|
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
|
|
const uint32_t gintmsk = dwc2->gintmsk;
|
|
const uint32_t gintsts = dwc2->gintsts & gintmsk;
|
|
|
|
// TU_LOG1_HEX(gintsts);
|
|
|
|
if (gintsts & GINTSTS_CONIDSTSCHNG) {
|
|
// Connector ID status change
|
|
dwc2->gintsts = GINTSTS_CONIDSTSCHNG;
|
|
|
|
//if (dwc2->gotgctl)
|
|
// dwc2->hprt = HPRT_POWER; // power on port to turn on VBUS
|
|
//dwc2->gintmsk |= GINTMSK_PRTIM;
|
|
// TODO wait for SRP if OTG
|
|
}
|
|
|
|
if (gintsts & GINTSTS_SOF) {
|
|
const bool more_sof = handle_sof_irq(rhport, in_isr);
|
|
if (!more_sof) {
|
|
dwc2->gintmsk &= ~GINTSTS_SOF;
|
|
}
|
|
}
|
|
|
|
if (gintsts & GINTSTS_HPRTINT) {
|
|
// Host port interrupt: source is cleared in HPRT register
|
|
// TU_LOG1_HEX(dwc2->hprt);
|
|
handle_hprt_irq(rhport, in_isr);
|
|
}
|
|
|
|
if (gintsts & GINTSTS_HCINT) {
|
|
// Host Channel interrupt: source is cleared in HCINT register
|
|
// must be handled after TX FIFO empty
|
|
handle_channel_irq(rhport, in_isr);
|
|
}
|
|
|
|
if (gintsts & GINTSTS_DISCINT) {
|
|
// Device disconnected
|
|
dwc2->gintsts = GINTSTS_DISCINT;
|
|
|
|
// ignore device removal if attach debounce is active
|
|
// it will evaluate the port status after the debounce delay
|
|
if (!_hcd_data.attach_debounce) {
|
|
if (!(dwc2->hprt & HPRT_CONN_STATUS)) {
|
|
hcd_event_device_remove(rhport, in_isr);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CFG_TUH_DWC2_SLAVE_ENABLE
|
|
// RxFIFO non-empty interrupt handling
|
|
if (gintsts & GINTSTS_RXFLVL) {
|
|
// RXFLVL bit is read-only
|
|
dwc2->gintmsk &= ~GINTSTS_RXFLVL; // disable RXFLVL interrupt while reading
|
|
|
|
do {
|
|
handle_rxflvl_irq(rhport); // read all packets
|
|
} while(dwc2->gintsts & GINTSTS_RXFLVL);
|
|
|
|
dwc2->gintmsk |= GINTSTS_RXFLVL;
|
|
}
|
|
|
|
if (gintsts & GINTSTS_NPTX_FIFO_EMPTY) {
|
|
// NPTX FIFO empty interrupt, this is read-only and cleared by hardware when FIFO is written
|
|
const bool more_nptxfe = handle_txfifo_empty(dwc2, false);
|
|
if (!more_nptxfe) {
|
|
// no more pending packet, disable interrupt
|
|
dwc2->gintmsk &= ~GINTSTS_NPTX_FIFO_EMPTY;
|
|
}
|
|
}
|
|
|
|
if (gintsts & GINTSTS_PTX_FIFO_EMPTY) {
|
|
// PTX FIFO empty interrupt, this is read-only and cleared by hardware when FIFO is written
|
|
const bool more_ptxfe = handle_txfifo_empty(dwc2, true);
|
|
if (!more_ptxfe) {
|
|
// no more pending packet, disable interrupt
|
|
dwc2->gintmsk &= ~GINTSTS_PTX_FIFO_EMPTY;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#endif
|