1547 lines
44 KiB
C
1547 lines
44 KiB
C
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2019 Nathan Conrad
|
|
*
|
|
* Portions:
|
|
* Copyright (c) 2016 STMicroelectronics
|
|
* Copyright (c) 2019 Ha Thach (tinyusb.org)
|
|
* Copyright (c) 2022 Simon Küppers (skuep)
|
|
* Copyright (c) 2022 HiFiPhile
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*
|
|
* This file is part of the TinyUSB stack.
|
|
*/
|
|
|
|
/**********************************************
|
|
* This driver has been tested with the following MCUs:
|
|
* - F070, F072, L053, F042F6
|
|
*
|
|
* It also should work with minimal changes for any ST MCU with an "USB A"/"PCD"/"HCD" peripheral. This
|
|
* covers:
|
|
*
|
|
* F04x, F072, F078, 070x6/B 1024 byte buffer
|
|
* F102, F103 512 byte buffer; no internal D+ pull-up (maybe many more changes?)
|
|
* F302xB/C, F303xB/C, F373 512 byte buffer; no internal D+ pull-up
|
|
* F302x6/8, F302xD/E2, F303xD/E 1024 byte buffer; no internal D+ pull-up
|
|
* L0x2, L0x3 1024 byte buffer
|
|
* L1 512 byte buffer
|
|
* L4x2, L4x3 1024 byte buffer
|
|
* G0 2048 byte buffer
|
|
*
|
|
* To use this driver, you must:
|
|
* - If you are using a device with crystal-less USB, set up the clock recovery system (CRS)
|
|
* - Remap pins to be D+/D- on devices that they are shared (for example: F042Fx)
|
|
* - This is different to the normal "alternate function" GPIO interface, needs to go through SYSCFG->CFGRx register
|
|
* - Enable USB clock; Perhaps use __HAL_RCC_USB_CLK_ENABLE();
|
|
* - (Optionally configure GPIO HAL to tell it the USB driver is using the USB pins)
|
|
* - call tusb_init();
|
|
* - periodically call tusb_task();
|
|
*
|
|
* Assumptions of the driver:
|
|
* - You are not using CAN (it must share the packet buffer)
|
|
* - APB clock is >= 10 MHz
|
|
* - On some boards, series resistors are required, but not on others.
|
|
* - On some boards, D+ pull up resistor (1.5kohm) is required, but not on others.
|
|
* - You don't have long-running interrupts; some USB packets must be quickly responded to.
|
|
* - You have the ST CMSIS library linked into the project. HAL is not used.
|
|
*
|
|
* Current driver limitations (i.e., a list of features for you to add):
|
|
* - STALL handled, but not tested.
|
|
* - Does it work? No clue.
|
|
* - All EP BTABLE buffers are created based on max packet size of first EP opened with that address.
|
|
* - Packet buffer memory is copied in the interrupt.
|
|
* - This is better for performance, but means interrupts are disabled for longer
|
|
* - DMA may be the best choice, but it could also be pushed to the USBD task.
|
|
* - No double-buffering
|
|
* - No DMA
|
|
* - Minimal error handling
|
|
* - Perhaps error interrupts should be reported to the stack, or cause a device reset?
|
|
* - Assumes a single USB peripheral; I think that no hardware has multiple so this is fine.
|
|
* - Add a callback for enabling/disabling the D+ PU on devices without an internal PU.
|
|
* - F3 models use three separate interrupts. I think we could only use the LP interrupt for
|
|
* everything? However, the interrupts are configurable so the DisableInt and EnableInt
|
|
* below functions could be adjusting the wrong interrupts (if they had been reconfigured)
|
|
* - LPM is not used correctly, or at all?
|
|
*
|
|
* USB documentation and Reference implementations
|
|
* - STM32 Reference manuals
|
|
* - STM32 USB Hardware Guidelines AN4879
|
|
*
|
|
* - STM32 HAL (much of this driver is based on this)
|
|
* - libopencm3/lib/stm32/common/st_usbfs_core.c
|
|
* - Keil USB Device http://www.keil.com/pack/doc/mw/USB/html/group__usbd.html
|
|
*
|
|
* - YouTube OpenTechLab 011; https://www.youtube.com/watch?v=4FOkJLp_PUw
|
|
*
|
|
* Advantages over HAL driver:
|
|
* - Tiny (saves RAM, assumes a single USB peripheral)
|
|
*
|
|
* Notes:
|
|
* - The buffer table is allocated as endpoints are opened. The allocation is only
|
|
* cleared when the device is reset. This may be bad if the USB device needs
|
|
* to be reconfigured.
|
|
*/
|
|
|
|
#include "tusb_option.h"
|
|
|
|
#if CFG_TUD_ENABLED && defined(TUP_USBIP_FSDEV)
|
|
|
|
#include "device/dcd.h"
|
|
|
|
#ifdef TUP_USBIP_FSDEV_STM32
|
|
// Undefine to reduce the dependence on HAL
|
|
#undef USE_HAL_DRIVER
|
|
#include "portable/st/stm32_fsdev/dcd_stm32_fsdev_pvt_st.h"
|
|
#endif
|
|
|
|
/*****************************************************
|
|
* Configuration
|
|
*****************************************************/
|
|
|
|
// HW supports max of 8 bidirectional endpoints, but this can be reduced to save RAM
|
|
// (8u here would mean 8 IN and 8 OUT)
|
|
#ifndef MAX_EP_COUNT
|
|
# define MAX_EP_COUNT 8U
|
|
#endif
|
|
|
|
// If sharing with CAN, one can set this to be non-zero to give CAN space where it wants it
|
|
// Both of these MUST be a multiple of 2, and are in byte units.
|
|
#ifndef DCD_STM32_BTABLE_BASE
|
|
# define DCD_STM32_BTABLE_BASE 0U
|
|
#endif
|
|
|
|
#ifndef DCD_STM32_BTABLE_LENGTH
|
|
# define DCD_STM32_BTABLE_LENGTH (PMA_LENGTH - DCD_STM32_BTABLE_BASE)
|
|
#endif
|
|
|
|
/***************************************************
|
|
* Checks, structs, defines, function definitions, etc.
|
|
*/
|
|
|
|
TU_VERIFY_STATIC((MAX_EP_COUNT) <= STFSDEV_EP_COUNT, "Only 8 endpoints supported on the hardware");
|
|
TU_VERIFY_STATIC(((DCD_STM32_BTABLE_BASE) + (DCD_STM32_BTABLE_LENGTH))<=(PMA_LENGTH), "BTABLE does not fit in PMA RAM");
|
|
TU_VERIFY_STATIC(((DCD_STM32_BTABLE_BASE) % 8) == 0, "BTABLE base must be aligned to 8 bytes");
|
|
|
|
//--------------------------------------------------------------------+
|
|
// MACRO CONSTANT TYPEDEF
|
|
//--------------------------------------------------------------------+
|
|
|
|
// One of these for every EP IN & OUT, uses a bit of RAM....
|
|
typedef struct
|
|
{
|
|
uint8_t * buffer;
|
|
tu_fifo_t * ff;
|
|
uint16_t total_len;
|
|
uint16_t queued_len;
|
|
uint16_t pma_ptr;
|
|
uint16_t max_packet_size;
|
|
uint16_t pma_alloc_size;
|
|
uint8_t ep_idx; // index for USB_EPnR register
|
|
} xfer_ctl_t;
|
|
|
|
// EP allocator
|
|
typedef struct
|
|
{
|
|
uint8_t ep_num;
|
|
uint8_t ep_type;
|
|
bool allocated[2];
|
|
} ep_alloc_t;
|
|
|
|
static xfer_ctl_t xfer_status[MAX_EP_COUNT][2];
|
|
|
|
static ep_alloc_t ep_alloc_status[STFSDEV_EP_COUNT];
|
|
|
|
static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[6];
|
|
|
|
static uint8_t remoteWakeCountdown; // When wake is requested
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Prototypes
|
|
//--------------------------------------------------------------------+
|
|
|
|
// into the stack.
|
|
static void dcd_handle_bus_reset(void);
|
|
static void dcd_transmit_packet(xfer_ctl_t * xfer, uint16_t ep_ix);
|
|
static void dcd_ep_ctr_handler(void);
|
|
|
|
// PMA allocation/access
|
|
static uint8_t open_ep_count;
|
|
static uint16_t ep_buf_ptr; ///< Points to first free memory location
|
|
static void dcd_pma_alloc_reset(void);
|
|
static uint16_t dcd_pma_alloc(uint8_t ep_addr, uint16_t length);
|
|
static void dcd_pma_free(uint8_t ep_addr);
|
|
static void dcd_ep_free(uint8_t ep_addr);
|
|
static uint8_t dcd_ep_alloc(uint8_t ep_addr, uint8_t ep_type);
|
|
static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, uint16_t wNBytes);
|
|
static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, uint16_t wNBytes);
|
|
|
|
static bool dcd_write_packet_memory_ff(tu_fifo_t * ff, uint16_t dst, uint16_t wNBytes);
|
|
static bool dcd_read_packet_memory_ff(tu_fifo_t * ff, uint16_t src, uint16_t wNBytes);
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Inline helper
|
|
//--------------------------------------------------------------------+
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline xfer_ctl_t* xfer_ctl_ptr(uint32_t ep_addr)
|
|
{
|
|
uint8_t epnum = tu_edpt_number(ep_addr);
|
|
uint8_t dir = tu_edpt_dir(ep_addr);
|
|
// Fix -Werror=null-dereference
|
|
TU_ASSERT(epnum < MAX_EP_COUNT, &xfer_status[0][0]);
|
|
|
|
return &xfer_status[epnum][dir];
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Controller API
|
|
//--------------------------------------------------------------------+
|
|
|
|
void dcd_init (uint8_t rhport)
|
|
{
|
|
/* Clocks should already be enabled */
|
|
/* Use __HAL_RCC_USB_CLK_ENABLE(); to enable the clocks before calling this function */
|
|
|
|
/* The RM mentions to use a special ordering of PDWN and FRES, but this isn't done in HAL.
|
|
* Here, the RM is followed. */
|
|
|
|
for(uint32_t i = 0; i<200; i++) // should be a few us
|
|
{
|
|
asm("NOP");
|
|
}
|
|
// Perform USB peripheral reset
|
|
USB->CNTR = USB_CNTR_FRES | USB_CNTR_PDWN;
|
|
for(uint32_t i = 0; i<200; i++) // should be a few us
|
|
{
|
|
asm("NOP");
|
|
}
|
|
|
|
USB->CNTR &= ~USB_CNTR_PDWN;
|
|
|
|
// Wait startup time, for F042 and F070, this is <= 1 us.
|
|
for(uint32_t i = 0; i<200; i++) // should be a few us
|
|
{
|
|
asm("NOP");
|
|
}
|
|
USB->CNTR = 0; // Enable USB
|
|
|
|
#if !defined(STM32G0) && !defined(STM32H5) // BTABLE register does not exist any more on STM32G0, it is fixed to USB SRAM base address
|
|
USB->BTABLE = DCD_STM32_BTABLE_BASE;
|
|
#endif
|
|
USB->ISTR = 0; // Clear pending interrupts
|
|
|
|
// Reset endpoints to disabled
|
|
for(uint32_t i=0; i<STFSDEV_EP_COUNT; i++)
|
|
{
|
|
// This doesn't clear all bits since some bits are "toggle", but does set the type to DISABLED.
|
|
pcd_set_endpoint(USB,i,0u);
|
|
}
|
|
|
|
USB->CNTR |= USB_CNTR_RESETM | USB_CNTR_ESOFM | USB_CNTR_CTRM | USB_CNTR_SUSPM | USB_CNTR_WKUPM;
|
|
dcd_handle_bus_reset();
|
|
|
|
// Enable pull-up if supported
|
|
if ( dcd_connect ) dcd_connect(rhport);
|
|
}
|
|
|
|
// Define only on MCU with internal pull-up. BSP can define on MCU without internal PU.
|
|
#if defined(USB_BCDR_DPPU)
|
|
|
|
// Disable internal D+ PU
|
|
void dcd_disconnect(uint8_t rhport)
|
|
{
|
|
(void) rhport;
|
|
USB->BCDR &= ~(USB_BCDR_DPPU);
|
|
}
|
|
|
|
// Enable internal D+ PU
|
|
void dcd_connect(uint8_t rhport)
|
|
{
|
|
(void) rhport;
|
|
USB->BCDR |= USB_BCDR_DPPU;
|
|
}
|
|
|
|
#elif defined(SYSCFG_PMC_USB_PU) // works e.g. on STM32L151
|
|
// Disable internal D+ PU
|
|
void dcd_disconnect(uint8_t rhport)
|
|
{
|
|
(void) rhport;
|
|
SYSCFG->PMC &= ~(SYSCFG_PMC_USB_PU);
|
|
}
|
|
|
|
// Enable internal D+ PU
|
|
void dcd_connect(uint8_t rhport)
|
|
{
|
|
(void) rhport;
|
|
SYSCFG->PMC |= SYSCFG_PMC_USB_PU;
|
|
}
|
|
#endif
|
|
|
|
void dcd_sof_enable(uint8_t rhport, bool en)
|
|
{
|
|
(void) rhport;
|
|
(void) en;
|
|
|
|
if (en)
|
|
{
|
|
USB->CNTR |= USB_CNTR_SOFM;
|
|
}
|
|
else
|
|
{
|
|
USB->CNTR &= ~USB_CNTR_SOFM;
|
|
}
|
|
}
|
|
|
|
// Enable device interrupt
|
|
void dcd_int_enable (uint8_t rhport)
|
|
{
|
|
(void)rhport;
|
|
// Member here forces write to RAM before allowing ISR to execute
|
|
__DSB();
|
|
__ISB();
|
|
#if CFG_TUSB_MCU == OPT_MCU_STM32F0 || CFG_TUSB_MCU == OPT_MCU_STM32L0 || \
|
|
CFG_TUSB_MCU == OPT_MCU_STM32L4
|
|
NVIC_EnableIRQ(USB_IRQn);
|
|
|
|
#elif CFG_TUSB_MCU == OPT_MCU_STM32L1
|
|
NVIC_EnableIRQ(USB_LP_IRQn);
|
|
|
|
#elif CFG_TUSB_MCU == OPT_MCU_STM32F3
|
|
// Some STM32F302/F303 devices allow to remap the USB interrupt vectors from
|
|
// shared USB/CAN IRQs to separate CAN and USB IRQs.
|
|
// This dynamically checks if this remap is active to enable the right IRQs.
|
|
#ifdef SYSCFG_CFGR1_USB_IT_RMP
|
|
if (SYSCFG->CFGR1 & SYSCFG_CFGR1_USB_IT_RMP)
|
|
{
|
|
NVIC_EnableIRQ(USB_HP_IRQn);
|
|
NVIC_EnableIRQ(USB_LP_IRQn);
|
|
NVIC_EnableIRQ(USBWakeUp_RMP_IRQn);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
NVIC_EnableIRQ(USB_HP_CAN_TX_IRQn);
|
|
NVIC_EnableIRQ(USB_LP_CAN_RX0_IRQn);
|
|
NVIC_EnableIRQ(USBWakeUp_IRQn);
|
|
}
|
|
#elif CFG_TUSB_MCU == OPT_MCU_STM32F1
|
|
NVIC_EnableIRQ(USB_HP_CAN1_TX_IRQn);
|
|
NVIC_EnableIRQ(USB_LP_CAN1_RX0_IRQn);
|
|
NVIC_EnableIRQ(USBWakeUp_IRQn);
|
|
|
|
#elif CFG_TUSB_MCU == OPT_MCU_STM32G4
|
|
NVIC_EnableIRQ(USB_HP_IRQn);
|
|
NVIC_EnableIRQ(USB_LP_IRQn);
|
|
NVIC_EnableIRQ(USBWakeUp_IRQn);
|
|
|
|
#elif CFG_TUSB_MCU == OPT_MCU_STM32G0
|
|
#ifdef STM32G0B0xx
|
|
NVIC_EnableIRQ(USB_IRQn);
|
|
#else
|
|
NVIC_EnableIRQ(USB_UCPD1_2_IRQn);
|
|
#endif
|
|
|
|
|
|
#elif CFG_TUSB_MCU == OPT_MCU_STM32H5
|
|
NVIC_EnableIRQ(USB_DRD_FS_IRQn);
|
|
|
|
|
|
#elif CFG_TUSB_MCU == OPT_MCU_STM32WB
|
|
NVIC_EnableIRQ(USB_HP_IRQn);
|
|
NVIC_EnableIRQ(USB_LP_IRQn);
|
|
|
|
#elif CFG_TUSB_MCU == OPT_MCU_STM32L5
|
|
NVIC_EnableIRQ(USB_FS_IRQn);
|
|
|
|
#else
|
|
#error Unknown arch in USB driver
|
|
#endif
|
|
}
|
|
|
|
// Disable device interrupt
|
|
void dcd_int_disable(uint8_t rhport)
|
|
{
|
|
(void)rhport;
|
|
|
|
#if CFG_TUSB_MCU == OPT_MCU_STM32F0 || CFG_TUSB_MCU == OPT_MCU_STM32L0 || \
|
|
CFG_TUSB_MCU == OPT_MCU_STM32L4
|
|
NVIC_DisableIRQ(USB_IRQn);
|
|
#elif CFG_TUSB_MCU == OPT_MCU_STM32L1
|
|
NVIC_DisableIRQ(USB_LP_IRQn);
|
|
#elif CFG_TUSB_MCU == OPT_MCU_STM32F3
|
|
// Some STM32F302/F303 devices allow to remap the USB interrupt vectors from
|
|
// shared USB/CAN IRQs to separate CAN and USB IRQs.
|
|
// This dynamically checks if this remap is active to disable the right IRQs.
|
|
#ifdef SYSCFG_CFGR1_USB_IT_RMP
|
|
if (SYSCFG->CFGR1 & SYSCFG_CFGR1_USB_IT_RMP)
|
|
{
|
|
NVIC_DisableIRQ(USB_HP_IRQn);
|
|
NVIC_DisableIRQ(USB_LP_IRQn);
|
|
NVIC_DisableIRQ(USBWakeUp_RMP_IRQn);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
NVIC_DisableIRQ(USB_HP_CAN_TX_IRQn);
|
|
NVIC_DisableIRQ(USB_LP_CAN_RX0_IRQn);
|
|
NVIC_DisableIRQ(USBWakeUp_IRQn);
|
|
}
|
|
#elif CFG_TUSB_MCU == OPT_MCU_STM32F1
|
|
NVIC_DisableIRQ(USB_HP_CAN1_TX_IRQn);
|
|
NVIC_DisableIRQ(USB_LP_CAN1_RX0_IRQn);
|
|
NVIC_DisableIRQ(USBWakeUp_IRQn);
|
|
|
|
#elif CFG_TUSB_MCU == OPT_MCU_STM32G4
|
|
NVIC_DisableIRQ(USB_HP_IRQn);
|
|
NVIC_DisableIRQ(USB_LP_IRQn);
|
|
NVIC_DisableIRQ(USBWakeUp_IRQn);
|
|
|
|
#elif CFG_TUSB_MCU == OPT_MCU_STM32G0
|
|
#ifdef STM32G0B0xx
|
|
NVIC_DisableIRQ(USB_IRQn);
|
|
#else
|
|
NVIC_DisableIRQ(USB_UCPD1_2_IRQn);
|
|
#endif
|
|
|
|
#elif CFG_TUSB_MCU == OPT_MCU_STM32H5
|
|
NVIC_DisableIRQ(USB_DRD_FS_IRQn);
|
|
|
|
|
|
#elif CFG_TUSB_MCU == OPT_MCU_STM32WB
|
|
NVIC_DisableIRQ(USB_HP_IRQn);
|
|
NVIC_DisableIRQ(USB_LP_IRQn);
|
|
|
|
#elif CFG_TUSB_MCU == OPT_MCU_STM32L5
|
|
NVIC_DisableIRQ(USB_FS_IRQn);
|
|
|
|
#else
|
|
#error Unknown arch in USB driver
|
|
#endif
|
|
|
|
// CMSIS has a membar after disabling interrupts
|
|
}
|
|
|
|
// Receive Set Address request, mcu port must also include status IN response
|
|
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
|
|
{
|
|
(void) rhport;
|
|
(void) dev_addr;
|
|
|
|
// Respond with status
|
|
dcd_edpt_xfer(rhport, TUSB_DIR_IN_MASK | 0x00, NULL, 0);
|
|
|
|
// DCD can only set address after status for this request is complete.
|
|
// do it at dcd_edpt0_status_complete()
|
|
}
|
|
|
|
void dcd_remote_wakeup(uint8_t rhport)
|
|
{
|
|
(void) rhport;
|
|
|
|
USB->CNTR |= USB_CNTR_RESUME;
|
|
remoteWakeCountdown = 4u; // required to be 1 to 15 ms, ESOF should trigger every 1ms.
|
|
}
|
|
|
|
static const tusb_desc_endpoint_t ep0OUT_desc =
|
|
{
|
|
.bLength = sizeof(tusb_desc_endpoint_t),
|
|
.bDescriptorType = TUSB_DESC_ENDPOINT,
|
|
|
|
.bEndpointAddress = 0x00,
|
|
.bmAttributes = { .xfer = TUSB_XFER_CONTROL },
|
|
.wMaxPacketSize = CFG_TUD_ENDPOINT0_SIZE,
|
|
.bInterval = 0
|
|
};
|
|
|
|
static const tusb_desc_endpoint_t ep0IN_desc =
|
|
{
|
|
.bLength = sizeof(tusb_desc_endpoint_t),
|
|
.bDescriptorType = TUSB_DESC_ENDPOINT,
|
|
|
|
.bEndpointAddress = 0x80,
|
|
.bmAttributes = { .xfer = TUSB_XFER_CONTROL },
|
|
.wMaxPacketSize = CFG_TUD_ENDPOINT0_SIZE,
|
|
.bInterval = 0
|
|
};
|
|
|
|
static void dcd_handle_bus_reset(void)
|
|
{
|
|
//__IO uint16_t * const epreg = &(EPREG(0));
|
|
USB->DADDR = 0u; // disable USB peripheral by clearing the EF flag
|
|
|
|
for(uint32_t i=0; i<STFSDEV_EP_COUNT; i++)
|
|
{
|
|
// Clear all EPREG (or maybe this is automatic? I'm not sure)
|
|
pcd_set_endpoint(USB,i,0u);
|
|
|
|
// Clear EP allocation status
|
|
ep_alloc_status[i].ep_num = 0xFF;
|
|
ep_alloc_status[i].ep_type = 0xFF;
|
|
ep_alloc_status[i].allocated[0] = false;
|
|
ep_alloc_status[i].allocated[1] = false;
|
|
}
|
|
|
|
dcd_pma_alloc_reset();
|
|
dcd_edpt_open (0, &ep0OUT_desc);
|
|
dcd_edpt_open (0, &ep0IN_desc);
|
|
|
|
USB->DADDR = USB_DADDR_EF; // Set enable flag, and leaving the device address as zero.
|
|
}
|
|
|
|
// Handle CTR interrupt for the TX/IN direction
|
|
//
|
|
// Upon call, (wIstr & USB_ISTR_DIR) == 0U
|
|
static void dcd_ep_ctr_tx_handler(uint32_t wIstr)
|
|
{
|
|
uint32_t EPindex = wIstr & USB_ISTR_EP_ID;
|
|
uint32_t wEPRegVal = pcd_get_endpoint(USB, EPindex);
|
|
uint8_t ep_addr = (wEPRegVal & USB_EPADDR_FIELD) | TUSB_DIR_IN_MASK;
|
|
|
|
// Verify the CTR_TX bit is set. This was in the ST Micro code,
|
|
// but I'm not sure it's actually necessary?
|
|
if((wEPRegVal & USB_EP_CTR_TX) == 0U)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/* clear int flag */
|
|
pcd_clear_tx_ep_ctr(USB, EPindex);
|
|
|
|
xfer_ctl_t * xfer = xfer_ctl_ptr(ep_addr);
|
|
if((xfer->total_len != xfer->queued_len)) /* TX not complete */
|
|
{
|
|
dcd_transmit_packet(xfer, EPindex);
|
|
}
|
|
else /* TX Complete */
|
|
{
|
|
dcd_event_xfer_complete(0, ep_addr, xfer->total_len, XFER_RESULT_SUCCESS, true);
|
|
}
|
|
}
|
|
|
|
// Handle CTR interrupt for the RX/OUT direction
|
|
//
|
|
// Upon call, (wIstr & USB_ISTR_DIR) == 0U
|
|
static void dcd_ep_ctr_rx_handler(uint32_t wIstr)
|
|
{
|
|
uint32_t EPindex = wIstr & USB_ISTR_EP_ID;
|
|
uint32_t wEPRegVal = pcd_get_endpoint(USB, EPindex);
|
|
uint8_t ep_addr = wEPRegVal & USB_EPADDR_FIELD;
|
|
|
|
xfer_ctl_t *xfer = xfer_ctl_ptr(ep_addr);
|
|
|
|
// Verify the CTR_RX bit is set. This was in the ST Micro code,
|
|
// but I'm not sure it's actually necessary?
|
|
if((wEPRegVal & USB_EP_CTR_RX) == 0U)
|
|
{
|
|
return;
|
|
}
|
|
|
|
if((ep_addr == 0U) && ((wEPRegVal & USB_EP_SETUP) != 0U)) /* Setup packet */
|
|
{
|
|
uint32_t count = pcd_get_ep_rx_cnt(USB, EPindex);
|
|
/* Get SETUP Packet*/
|
|
if(count == 8) // Setup packet should always be 8 bytes. If not, ignore it, and try again.
|
|
{
|
|
// Must reset EP to NAK (in case it had been stalling) (though, maybe too late here)
|
|
pcd_set_ep_rx_status(USB,0u,USB_EP_RX_NAK);
|
|
pcd_set_ep_tx_status(USB,0u,USB_EP_TX_NAK);
|
|
#ifdef PMA_32BIT_ACCESS
|
|
dcd_event_setup_received(0, (uint8_t*)(USB_PMAADDR + pcd_get_ep_rx_address(USB, EPindex)), true);
|
|
#else
|
|
// The setup_received function uses memcpy, so this must first copy the setup data into
|
|
// user memory, to allow for the 32-bit access that memcpy performs.
|
|
uint8_t userMemBuf[8];
|
|
dcd_read_packet_memory(userMemBuf, pcd_get_ep_rx_address(USB,EPindex), 8);
|
|
dcd_event_setup_received(0, (uint8_t*)userMemBuf, true);
|
|
#endif
|
|
}
|
|
}
|
|
else
|
|
{
|
|
uint32_t count;
|
|
/* Read from correct register when ISOCHRONOUS (double buffered) */
|
|
if ( (wEPRegVal & USB_EP_DTOG_RX) && ( (wEPRegVal & USB_EP_TYPE_MASK) == USB_EP_ISOCHRONOUS) ) {
|
|
count = pcd_get_ep_tx_cnt(USB, EPindex);
|
|
} else {
|
|
count = pcd_get_ep_rx_cnt(USB, EPindex);
|
|
}
|
|
|
|
TU_ASSERT(count <= xfer->max_packet_size, /**/);
|
|
|
|
// Clear RX CTR interrupt flag
|
|
if(ep_addr != 0u)
|
|
{
|
|
pcd_clear_rx_ep_ctr(USB, EPindex);
|
|
}
|
|
|
|
if (count != 0U)
|
|
{
|
|
uint16_t addr = pcd_get_ep_rx_address(USB, EPindex);
|
|
|
|
if (xfer->ff)
|
|
{
|
|
dcd_read_packet_memory_ff(xfer->ff, addr, count);
|
|
}
|
|
else
|
|
{
|
|
dcd_read_packet_memory(&(xfer->buffer[xfer->queued_len]), addr, count);
|
|
}
|
|
|
|
xfer->queued_len = (uint16_t)(xfer->queued_len + count);
|
|
}
|
|
|
|
if ((count < xfer->max_packet_size) || (xfer->queued_len == xfer->total_len))
|
|
{
|
|
/* RX COMPLETE */
|
|
dcd_event_xfer_complete(0, ep_addr, xfer->queued_len, XFER_RESULT_SUCCESS, true);
|
|
// Though the host could still send, we don't know.
|
|
// Does the bulk pipe need to be reset to valid to allow for a ZLP?
|
|
}
|
|
else
|
|
{
|
|
uint32_t remaining = (uint32_t)xfer->total_len - (uint32_t)xfer->queued_len;
|
|
if(remaining >= xfer->max_packet_size) {
|
|
pcd_set_ep_rx_bufsize(USB, EPindex,xfer->max_packet_size);
|
|
} else {
|
|
pcd_set_ep_rx_bufsize(USB, EPindex,remaining);
|
|
}
|
|
|
|
if (!((wEPRegVal & USB_EP_TYPE_MASK) == USB_EP_ISOCHRONOUS)) {
|
|
/* Set endpoint active again for receiving more data.
|
|
* Note that isochronous endpoints stay active always */
|
|
pcd_set_ep_rx_status(USB, EPindex, USB_EP_RX_VALID);
|
|
}
|
|
}
|
|
}
|
|
|
|
// For EP0, prepare to receive another SETUP packet.
|
|
// Clear CTR last so that a new packet does not overwrite the packing being read.
|
|
// (Based on the docs, it seems SETUP will always be accepted after CTR is cleared)
|
|
if(ep_addr == 0u)
|
|
{
|
|
// Always be prepared for a status packet...
|
|
pcd_set_ep_rx_bufsize(USB, EPindex, CFG_TUD_ENDPOINT0_SIZE);
|
|
pcd_clear_rx_ep_ctr(USB, EPindex);
|
|
}
|
|
}
|
|
|
|
static void dcd_ep_ctr_handler(void)
|
|
{
|
|
uint32_t wIstr;
|
|
|
|
/* stay in loop while pending interrupts */
|
|
while (((wIstr = USB->ISTR) & USB_ISTR_CTR) != 0U)
|
|
{
|
|
|
|
if ((wIstr & USB_ISTR_DIR) == 0U) /* TX/IN */
|
|
{
|
|
dcd_ep_ctr_tx_handler(wIstr);
|
|
}
|
|
else /* RX/OUT*/
|
|
{
|
|
dcd_ep_ctr_rx_handler(wIstr);
|
|
}
|
|
}
|
|
}
|
|
|
|
void dcd_int_handler(uint8_t rhport) {
|
|
|
|
(void) rhport;
|
|
|
|
uint32_t int_status = USB->ISTR;
|
|
//const uint32_t handled_ints = USB_ISTR_CTR | USB_ISTR_RESET | USB_ISTR_WKUP
|
|
// | USB_ISTR_SUSP | USB_ISTR_SOF | USB_ISTR_ESOF;
|
|
// unused IRQs: (USB_ISTR_PMAOVR | USB_ISTR_ERR | USB_ISTR_L1REQ )
|
|
|
|
// The ST driver loops here on the CTR bit, but that loop has been moved into the
|
|
// dcd_ep_ctr_handler(), so less need to loop here. The other interrupts shouldn't
|
|
// be triggered repeatedly.
|
|
|
|
/* Put SOF flag at the beginning of ISR in case to get least amount of jitter if it is used for timing purposes */
|
|
if(int_status & USB_ISTR_SOF) {
|
|
USB->ISTR &=~USB_ISTR_SOF;
|
|
dcd_event_sof(0, USB->FNR & USB_FNR_FN, true);
|
|
}
|
|
|
|
if(int_status & USB_ISTR_RESET) {
|
|
// USBRST is start of reset.
|
|
USB->ISTR &=~USB_ISTR_RESET;
|
|
dcd_handle_bus_reset();
|
|
dcd_event_bus_reset(0, TUSB_SPEED_FULL, true);
|
|
return; // Don't do the rest of the things here; perhaps they've been cleared?
|
|
}
|
|
|
|
if (int_status & USB_ISTR_CTR)
|
|
{
|
|
/* servicing of the endpoint correct transfer interrupt */
|
|
/* clear of the CTR flag into the sub */
|
|
dcd_ep_ctr_handler();
|
|
}
|
|
|
|
if (int_status & USB_ISTR_WKUP)
|
|
{
|
|
USB->CNTR &= ~USB_CNTR_LPMODE;
|
|
USB->CNTR &= ~USB_CNTR_FSUSP;
|
|
|
|
USB->ISTR &=~USB_ISTR_WKUP;
|
|
dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
|
|
}
|
|
|
|
if (int_status & USB_ISTR_SUSP)
|
|
{
|
|
/* Suspend is asserted for both suspend and unplug events. without Vbus monitoring,
|
|
* these events cannot be differentiated, so we only trigger suspend. */
|
|
|
|
/* Force low-power mode in the macrocell */
|
|
USB->CNTR |= USB_CNTR_FSUSP;
|
|
USB->CNTR |= USB_CNTR_LPMODE;
|
|
|
|
/* clear of the ISTR bit must be done after setting of CNTR_FSUSP */
|
|
USB->ISTR &=~USB_ISTR_SUSP;
|
|
dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
|
|
}
|
|
|
|
if(int_status & USB_ISTR_ESOF) {
|
|
if(remoteWakeCountdown == 1u)
|
|
{
|
|
USB->CNTR &= ~USB_CNTR_RESUME;
|
|
}
|
|
if(remoteWakeCountdown > 0u)
|
|
{
|
|
remoteWakeCountdown--;
|
|
}
|
|
USB->ISTR &=~USB_ISTR_ESOF;
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Endpoint API
|
|
//--------------------------------------------------------------------+
|
|
|
|
// Invoked when a control transfer's status stage is complete.
|
|
// May help DCD to prepare for next control transfer, this API is optional.
|
|
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
|
|
{
|
|
(void) rhport;
|
|
|
|
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
|
|
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
|
|
request->bRequest == TUSB_REQ_SET_ADDRESS )
|
|
{
|
|
uint8_t const dev_addr = (uint8_t) request->wValue;
|
|
|
|
// Setting new address after the whole request is complete
|
|
USB->DADDR &= ~USB_DADDR_ADD;
|
|
USB->DADDR |= dev_addr; // leave the enable bit set
|
|
}
|
|
}
|
|
|
|
static void dcd_pma_alloc_reset(void)
|
|
{
|
|
open_ep_count = 0;
|
|
ep_buf_ptr = DCD_STM32_BTABLE_BASE + 8*MAX_EP_COUNT; // 8 bytes per endpoint (two TX and two RX words, each)
|
|
//TU_LOG2("dcd_pma_alloc_reset()\r\n");
|
|
for(uint32_t i=0; i<MAX_EP_COUNT; i++)
|
|
{
|
|
xfer_ctl_ptr(tu_edpt_addr(i,TUSB_DIR_OUT))->pma_alloc_size = 0U;
|
|
xfer_ctl_ptr(tu_edpt_addr(i,TUSB_DIR_IN))->pma_alloc_size = 0U;
|
|
xfer_ctl_ptr(tu_edpt_addr(i,TUSB_DIR_OUT))->pma_ptr = 0U;
|
|
xfer_ctl_ptr(tu_edpt_addr(i,TUSB_DIR_IN))->pma_ptr = 0U;
|
|
}
|
|
}
|
|
|
|
/***
|
|
* Allocate a section of PMA
|
|
*
|
|
* If the EP number has already been allocated, and the new allocation
|
|
* is larger than the old allocation, then this will fail with a TU_ASSERT.
|
|
* (This is done to simplify the code. More complicated algorithms could be used)
|
|
*
|
|
* During failure, TU_ASSERT is used. If this happens, rework/reallocate memory manually.
|
|
*/
|
|
static uint16_t dcd_pma_alloc(uint8_t ep_addr, uint16_t length)
|
|
{
|
|
xfer_ctl_t* epXferCtl = xfer_ctl_ptr(ep_addr);
|
|
|
|
if(epXferCtl->pma_alloc_size != 0U)
|
|
{
|
|
//TU_LOG2("dcd_pma_alloc(%x,%x)=%x (cached)\r\n",ep_addr,length,epXferCtl->pma_ptr);
|
|
// Previously allocated
|
|
TU_ASSERT(length <= epXferCtl->pma_alloc_size, 0xFFFF); // Verify no larger than previous alloc
|
|
return epXferCtl->pma_ptr;
|
|
}
|
|
|
|
// Ensure allocated buffer is aligned
|
|
#ifdef PMA_32BIT_ACCESS
|
|
length = (length + 3) & ~0x03;
|
|
#else
|
|
length = (length + 1) & ~0x01;
|
|
#endif
|
|
|
|
open_ep_count++;
|
|
|
|
uint16_t addr = ep_buf_ptr;
|
|
ep_buf_ptr = (uint16_t)(ep_buf_ptr + length); // increment buffer pointer
|
|
|
|
// Verify no overflow
|
|
TU_ASSERT(ep_buf_ptr <= PMA_LENGTH, 0xFFFF);
|
|
|
|
epXferCtl->pma_ptr = addr;
|
|
epXferCtl->pma_alloc_size = length;
|
|
//TU_LOG1("dcd_pma_alloc(%x,%x)=%x\r\n",ep_addr,length,addr);
|
|
|
|
return addr;
|
|
}
|
|
|
|
/***
|
|
* Free a block of PMA space
|
|
*/
|
|
static void dcd_pma_free(uint8_t ep_addr)
|
|
{
|
|
// Presently, this should never be called for EP0 IN/OUT
|
|
TU_ASSERT(open_ep_count > 2, /**/);
|
|
TU_ASSERT(xfer_ctl_ptr(ep_addr)->max_packet_size != 0, /**/);
|
|
open_ep_count--;
|
|
|
|
// If count is 2, only EP0 should be open, so allocations can be mostly reset.
|
|
|
|
if(open_ep_count == 2)
|
|
{
|
|
ep_buf_ptr = DCD_STM32_BTABLE_BASE + 8*MAX_EP_COUNT + 2*CFG_TUD_ENDPOINT0_SIZE; // 8 bytes per endpoint (two TX and two RX words, each), and EP0
|
|
|
|
// Skip EP0
|
|
for(uint32_t i=1; i<MAX_EP_COUNT; i++)
|
|
{
|
|
xfer_ctl_ptr(tu_edpt_addr(i,TUSB_DIR_OUT))->pma_alloc_size = 0U;
|
|
xfer_ctl_ptr(tu_edpt_addr(i,TUSB_DIR_IN))->pma_alloc_size = 0U;
|
|
xfer_ctl_ptr(tu_edpt_addr(i,TUSB_DIR_OUT))->pma_ptr = 0U;
|
|
xfer_ctl_ptr(tu_edpt_addr(i,TUSB_DIR_IN))->pma_ptr = 0U;
|
|
}
|
|
}
|
|
}
|
|
|
|
/***
|
|
* Allocate hardware endpoint
|
|
*/
|
|
static uint8_t dcd_ep_alloc(uint8_t ep_addr, uint8_t ep_type)
|
|
{
|
|
uint8_t const epnum = tu_edpt_number(ep_addr);
|
|
uint8_t const dir = tu_edpt_dir(ep_addr);
|
|
|
|
for(uint8_t i = 0; i < STFSDEV_EP_COUNT; i++)
|
|
{
|
|
// Check if already allocated
|
|
if(ep_alloc_status[i].allocated[dir] &&
|
|
ep_alloc_status[i].ep_type == ep_type &&
|
|
ep_alloc_status[i].ep_num == epnum)
|
|
{
|
|
return i;
|
|
}
|
|
|
|
// If EP of current direction is not allocated
|
|
// Except for ISO endpoint, both direction should be free
|
|
if(!ep_alloc_status[i].allocated[dir] &&
|
|
(ep_type != TUSB_XFER_ISOCHRONOUS || !ep_alloc_status[i].allocated[dir ^ 1]))
|
|
{
|
|
// Check if EP number is the same
|
|
if(ep_alloc_status[i].ep_num == 0xFF ||
|
|
ep_alloc_status[i].ep_num == epnum)
|
|
{
|
|
// One EP pair has to be the same type
|
|
if(ep_alloc_status[i].ep_type == 0xFF ||
|
|
ep_alloc_status[i].ep_type == ep_type)
|
|
{
|
|
ep_alloc_status[i].ep_num = epnum;
|
|
ep_alloc_status[i].ep_type = ep_type;
|
|
ep_alloc_status[i].allocated[dir] = true;
|
|
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Allocation failed
|
|
TU_ASSERT(0);
|
|
}
|
|
|
|
/***
|
|
* Free hardware endpoint
|
|
*/
|
|
static void dcd_ep_free(uint8_t ep_addr)
|
|
{
|
|
uint8_t const epnum = tu_edpt_number(ep_addr);
|
|
uint8_t const dir = tu_edpt_dir(ep_addr);
|
|
|
|
for(uint8_t i = 0; i < STFSDEV_EP_COUNT; i++)
|
|
{
|
|
// Check if EP number & dir are the same
|
|
if(ep_alloc_status[i].ep_num == epnum &&
|
|
ep_alloc_status[i].allocated[dir] == dir)
|
|
{
|
|
ep_alloc_status[i].allocated[dir] = false;
|
|
// Reset entry if ISO endpoint or both direction are free
|
|
if(ep_alloc_status[i].ep_type == TUSB_XFER_ISOCHRONOUS ||
|
|
!ep_alloc_status[i].allocated[dir ^ 1])
|
|
{
|
|
ep_alloc_status[i].ep_num = 0xFF;
|
|
ep_alloc_status[i].ep_type = 0xFF;
|
|
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// The STM32F0 doesn't seem to like |= or &= to manipulate the EP#R registers,
|
|
// so I'm using the #define from HAL here, instead.
|
|
|
|
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
|
|
{
|
|
(void)rhport;
|
|
uint8_t const ep_idx = dcd_ep_alloc(p_endpoint_desc->bEndpointAddress, p_endpoint_desc->bmAttributes.xfer);
|
|
uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
|
|
const uint16_t packet_size = tu_edpt_packet_size(p_endpoint_desc);
|
|
const uint16_t buffer_size = pcd_aligned_buffer_size(packet_size);
|
|
uint16_t pma_addr;
|
|
uint32_t wType;
|
|
|
|
TU_ASSERT(ep_idx < STFSDEV_EP_COUNT);
|
|
TU_ASSERT(buffer_size <= 1024);
|
|
|
|
// Set type
|
|
switch(p_endpoint_desc->bmAttributes.xfer) {
|
|
case TUSB_XFER_CONTROL:
|
|
wType = USB_EP_CONTROL;
|
|
break;
|
|
case TUSB_XFER_ISOCHRONOUS:
|
|
wType = USB_EP_ISOCHRONOUS;
|
|
break;
|
|
case TUSB_XFER_BULK:
|
|
wType = USB_EP_CONTROL;
|
|
break;
|
|
|
|
case TUSB_XFER_INTERRUPT:
|
|
wType = USB_EP_INTERRUPT;
|
|
break;
|
|
|
|
default:
|
|
TU_ASSERT(false);
|
|
}
|
|
|
|
pcd_set_eptype(USB, ep_idx, wType);
|
|
pcd_set_ep_address(USB, ep_idx, tu_edpt_number(p_endpoint_desc->bEndpointAddress));
|
|
// Be normal, for now, instead of only accepting zero-byte packets (on control endpoint)
|
|
// or being double-buffered (bulk endpoints)
|
|
pcd_clear_ep_kind(USB,0);
|
|
|
|
/* Create a packet memory buffer area. For isochronous endpoints,
|
|
* use the same buffer as the double buffer, essentially disabling double buffering */
|
|
pma_addr = dcd_pma_alloc(p_endpoint_desc->bEndpointAddress, buffer_size);
|
|
|
|
if( (dir == TUSB_DIR_IN) || (wType == USB_EP_ISOCHRONOUS) )
|
|
{
|
|
pcd_set_ep_tx_address(USB, ep_idx, pma_addr);
|
|
pcd_set_ep_tx_bufsize(USB, ep_idx, buffer_size);
|
|
pcd_clear_tx_dtog(USB, ep_idx);
|
|
}
|
|
|
|
if( (dir == TUSB_DIR_OUT) || (wType == USB_EP_ISOCHRONOUS) )
|
|
{
|
|
pcd_set_ep_rx_address(USB, ep_idx, pma_addr);
|
|
pcd_set_ep_rx_bufsize(USB, ep_idx, buffer_size);
|
|
pcd_clear_rx_dtog(USB, ep_idx);
|
|
}
|
|
|
|
/* Enable endpoint */
|
|
if (dir == TUSB_DIR_IN)
|
|
{
|
|
if(wType == USB_EP_ISOCHRONOUS) {
|
|
pcd_set_ep_tx_status(USB, ep_idx, USB_EP_TX_DIS);
|
|
} else {
|
|
pcd_set_ep_tx_status(USB, ep_idx, USB_EP_TX_NAK);
|
|
}
|
|
} else
|
|
{
|
|
if(wType == USB_EP_ISOCHRONOUS) {
|
|
pcd_set_ep_rx_status(USB, ep_idx, USB_EP_RX_DIS);
|
|
} else {
|
|
pcd_set_ep_rx_status(USB, ep_idx, USB_EP_RX_NAK);
|
|
}
|
|
}
|
|
|
|
xfer_ctl_ptr(p_endpoint_desc->bEndpointAddress)->max_packet_size = packet_size;
|
|
xfer_ctl_ptr(p_endpoint_desc->bEndpointAddress)->ep_idx = ep_idx;
|
|
|
|
return true;
|
|
}
|
|
|
|
void dcd_edpt_close_all (uint8_t rhport)
|
|
{
|
|
(void) rhport;
|
|
// TODO implement dcd_edpt_close_all()
|
|
}
|
|
|
|
/**
|
|
* Close an endpoint.
|
|
*
|
|
* This function may be called with interrupts enabled or disabled.
|
|
*
|
|
* This also clears transfers in progress, should there be any.
|
|
*/
|
|
void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
|
|
{
|
|
(void)rhport;
|
|
|
|
xfer_ctl_t * xfer = xfer_ctl_ptr(ep_addr);
|
|
uint8_t const ep_idx = xfer->ep_idx;
|
|
uint8_t const dir = tu_edpt_dir(ep_addr);
|
|
|
|
if(dir == TUSB_DIR_IN)
|
|
{
|
|
pcd_set_ep_tx_status(USB, ep_idx, USB_EP_TX_DIS);
|
|
}
|
|
else
|
|
{
|
|
pcd_set_ep_rx_status(USB, ep_idx, USB_EP_RX_DIS);
|
|
}
|
|
|
|
dcd_ep_free(ep_addr);
|
|
|
|
dcd_pma_free(ep_addr);
|
|
}
|
|
|
|
bool dcd_edpt_iso_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t largest_packet_size)
|
|
{
|
|
(void)rhport;
|
|
|
|
TU_ASSERT(largest_packet_size <= 1024);
|
|
|
|
uint8_t const ep_idx = dcd_ep_alloc(ep_addr, TUSB_XFER_ISOCHRONOUS);
|
|
const uint16_t buffer_size = pcd_aligned_buffer_size(largest_packet_size);
|
|
|
|
/* Create a packet memory buffer area. For isochronous endpoints,
|
|
* use the same buffer as the double buffer, essentially disabling double buffering */
|
|
uint16_t pma_addr = dcd_pma_alloc(ep_addr, buffer_size);
|
|
|
|
xfer_ctl_ptr(ep_addr)->ep_idx = ep_idx;
|
|
|
|
pcd_set_eptype(USB, ep_idx, USB_EP_ISOCHRONOUS);
|
|
|
|
pcd_set_ep_tx_address(USB, ep_idx, pma_addr);
|
|
pcd_set_ep_rx_address(USB, ep_idx, pma_addr);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool dcd_edpt_iso_activate(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc)
|
|
{
|
|
(void)rhport;
|
|
uint8_t const ep_idx = xfer_ctl_ptr(p_endpoint_desc->bEndpointAddress)->ep_idx;
|
|
uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
|
|
const uint16_t packet_size = tu_edpt_packet_size(p_endpoint_desc);
|
|
const uint16_t buffer_size = pcd_aligned_buffer_size(packet_size);
|
|
|
|
/* Disable endpoint */
|
|
if(dir == TUSB_DIR_IN)
|
|
{
|
|
pcd_set_ep_tx_status(USB, ep_idx, USB_EP_TX_DIS);
|
|
}
|
|
else
|
|
{
|
|
pcd_set_ep_rx_status(USB, ep_idx, USB_EP_RX_DIS);
|
|
}
|
|
|
|
pcd_set_ep_address(USB, ep_idx, tu_edpt_number(p_endpoint_desc->bEndpointAddress));
|
|
// Be normal, for now, instead of only accepting zero-byte packets (on control endpoint)
|
|
// or being double-buffered (bulk endpoints)
|
|
pcd_clear_ep_kind(USB,0);
|
|
|
|
pcd_set_ep_tx_bufsize(USB, ep_idx, buffer_size);
|
|
pcd_set_ep_rx_bufsize(USB, ep_idx, buffer_size);
|
|
pcd_clear_tx_dtog(USB, ep_idx);
|
|
pcd_clear_rx_dtog(USB, ep_idx);
|
|
|
|
xfer_ctl_ptr(p_endpoint_desc->bEndpointAddress)->max_packet_size = packet_size;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Currently, single-buffered, and only 64 bytes at a time (max)
|
|
|
|
static void dcd_transmit_packet(xfer_ctl_t * xfer, uint16_t ep_ix)
|
|
{
|
|
uint16_t len = (uint16_t)(xfer->total_len - xfer->queued_len);
|
|
|
|
if(len > xfer->max_packet_size) // max packet size for FS transfer
|
|
{
|
|
len = xfer->max_packet_size;
|
|
}
|
|
|
|
uint16_t ep_reg = pcd_get_endpoint(USB, ep_ix);
|
|
uint16_t addr_ptr = pcd_get_ep_tx_address(USB, ep_ix);
|
|
|
|
if (xfer->ff)
|
|
{
|
|
dcd_write_packet_memory_ff(xfer->ff, addr_ptr, len);
|
|
}
|
|
else
|
|
{
|
|
dcd_write_packet_memory(addr_ptr, &(xfer->buffer[xfer->queued_len]), len);
|
|
}
|
|
xfer->queued_len = (uint16_t)(xfer->queued_len + len);
|
|
|
|
/* Write into correct register when ISOCHRONOUS (double buffered) */
|
|
if ( (ep_reg & USB_EP_DTOG_TX) && ( (ep_reg & USB_EP_TYPE_MASK) == USB_EP_ISOCHRONOUS) ) {
|
|
pcd_set_ep_rx_cnt(USB, ep_ix, len);
|
|
} else {
|
|
pcd_set_ep_tx_cnt(USB, ep_ix, len);
|
|
}
|
|
|
|
pcd_set_ep_tx_status(USB, ep_ix, USB_EP_TX_VALID);
|
|
}
|
|
|
|
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
|
|
{
|
|
(void) rhport;
|
|
|
|
xfer_ctl_t * xfer = xfer_ctl_ptr(ep_addr);
|
|
uint8_t const ep_idx = xfer->ep_idx;
|
|
uint8_t const dir = tu_edpt_dir(ep_addr);
|
|
|
|
xfer->buffer = buffer;
|
|
xfer->ff = NULL;
|
|
xfer->total_len = total_bytes;
|
|
xfer->queued_len = 0;
|
|
|
|
if ( dir == TUSB_DIR_OUT )
|
|
{
|
|
// A setup token can occur immediately after an OUT STATUS packet so make sure we have a valid
|
|
// buffer for the control endpoint.
|
|
if (ep_idx == 0 && buffer == NULL)
|
|
{
|
|
xfer->buffer = (uint8_t*)_setup_packet;
|
|
}
|
|
|
|
if(total_bytes > xfer->max_packet_size)
|
|
{
|
|
pcd_set_ep_rx_bufsize(USB,ep_idx,xfer->max_packet_size);
|
|
} else {
|
|
pcd_set_ep_rx_bufsize(USB,ep_idx,total_bytes);
|
|
}
|
|
pcd_set_ep_rx_status(USB, ep_idx, USB_EP_RX_VALID);
|
|
}
|
|
else // IN
|
|
{
|
|
dcd_transmit_packet(xfer,ep_idx);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
|
|
{
|
|
(void) rhport;
|
|
|
|
xfer_ctl_t * xfer = xfer_ctl_ptr(ep_addr);
|
|
uint8_t const epnum = xfer->ep_idx;
|
|
uint8_t const dir = tu_edpt_dir(ep_addr);
|
|
|
|
xfer->buffer = NULL;
|
|
xfer->ff = ff;
|
|
xfer->total_len = total_bytes;
|
|
xfer->queued_len = 0;
|
|
|
|
if ( dir == TUSB_DIR_OUT )
|
|
{
|
|
if(total_bytes > xfer->max_packet_size)
|
|
{
|
|
pcd_set_ep_rx_bufsize(USB,epnum,xfer->max_packet_size);
|
|
} else {
|
|
pcd_set_ep_rx_bufsize(USB,epnum,total_bytes);
|
|
}
|
|
pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_VALID);
|
|
}
|
|
else // IN
|
|
{
|
|
dcd_transmit_packet(xfer,epnum);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
|
|
{
|
|
(void)rhport;
|
|
|
|
xfer_ctl_t * xfer = xfer_ctl_ptr(ep_addr);
|
|
uint8_t const ep_idx = xfer->ep_idx;
|
|
uint8_t const dir = tu_edpt_dir(ep_addr);
|
|
|
|
if (dir == TUSB_DIR_IN)
|
|
{ // IN
|
|
pcd_set_ep_tx_status(USB, ep_idx, USB_EP_TX_STALL);
|
|
}
|
|
else
|
|
{ // OUT
|
|
pcd_set_ep_rx_status(USB, ep_idx, USB_EP_RX_STALL);
|
|
}
|
|
}
|
|
|
|
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
|
|
{
|
|
(void)rhport;
|
|
|
|
xfer_ctl_t * xfer = xfer_ctl_ptr(ep_addr);
|
|
uint8_t const ep_idx = xfer->ep_idx;
|
|
uint8_t const dir = tu_edpt_dir(ep_addr);
|
|
|
|
if (dir == TUSB_DIR_IN)
|
|
{ // IN
|
|
if (pcd_get_eptype(USB, ep_idx) != USB_EP_ISOCHRONOUS) {
|
|
pcd_set_ep_tx_status(USB, ep_idx, USB_EP_TX_NAK);
|
|
}
|
|
|
|
/* Reset to DATA0 if clearing stall condition. */
|
|
pcd_clear_tx_dtog(USB, ep_idx);
|
|
}
|
|
else
|
|
{ // OUT
|
|
if (pcd_get_eptype(USB, ep_idx) != USB_EP_ISOCHRONOUS) {
|
|
pcd_set_ep_rx_status(USB, ep_idx, USB_EP_RX_NAK);
|
|
}
|
|
/* Reset to DATA0 if clearing stall condition. */
|
|
pcd_clear_rx_dtog(USB, ep_idx);
|
|
}
|
|
}
|
|
|
|
#ifdef PMA_32BIT_ACCESS
|
|
static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, uint16_t wNBytes)
|
|
{
|
|
const uint8_t* srcVal = src;
|
|
volatile uint32_t* dst32 = (volatile uint32_t*)(USB_PMAADDR + dst);
|
|
|
|
for (uint32_t n = wNBytes / 4; n > 0; --n) {
|
|
*dst32++ = tu_unaligned_read32(srcVal);
|
|
srcVal += 4;
|
|
}
|
|
|
|
wNBytes = wNBytes & 0x03;
|
|
if (wNBytes)
|
|
{
|
|
uint32_t wrVal = *srcVal;
|
|
wNBytes--;
|
|
|
|
if (wNBytes)
|
|
{
|
|
wrVal |= *++srcVal << 8;
|
|
wNBytes--;
|
|
|
|
if (wNBytes)
|
|
{
|
|
wrVal |= *++srcVal << 16;
|
|
}
|
|
}
|
|
|
|
*dst32 = wrVal;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#else
|
|
// Packet buffer access can only be 8- or 16-bit.
|
|
/**
|
|
* @brief Copy a buffer from user memory area to packet memory area (PMA).
|
|
* This uses byte-access for user memory (so support non-aligned buffers)
|
|
* and 16-bit access for packet memory.
|
|
* @param dst, byte address in PMA; must be 16-bit aligned
|
|
* @param src pointer to user memory area.
|
|
* @param wPMABufAddr address into PMA.
|
|
* @param wNBytes no. of bytes to be copied.
|
|
* @retval None
|
|
*/
|
|
static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, uint16_t wNBytes)
|
|
{
|
|
uint32_t n = (uint32_t)wNBytes >> 1U;
|
|
uint16_t temp1, temp2;
|
|
const uint8_t * srcVal;
|
|
|
|
// The GCC optimizer will combine access to 32-bit sizes if we let it. Force
|
|
// it volatile so that it won't do that.
|
|
__IO uint16_t *pdwVal;
|
|
|
|
srcVal = src;
|
|
pdwVal = &pma[PMA_STRIDE*(dst>>1)];
|
|
|
|
while (n--)
|
|
{
|
|
temp1 = (uint16_t)*srcVal;
|
|
srcVal++;
|
|
temp2 = temp1 | ((uint16_t)(((uint16_t)(*srcVal)) << 8U)) ;
|
|
*pdwVal = temp2;
|
|
pdwVal += PMA_STRIDE;
|
|
srcVal++;
|
|
}
|
|
|
|
if (wNBytes)
|
|
{
|
|
temp1 = *srcVal;
|
|
*pdwVal = temp1;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @brief Copy from FIFO to packet memory area (PMA).
|
|
* Uses byte-access of system memory and 16-bit access of packet memory
|
|
* @param wNBytes no. of bytes to be copied.
|
|
* @retval None
|
|
*/
|
|
static bool dcd_write_packet_memory_ff(tu_fifo_t * ff, uint16_t dst, uint16_t wNBytes)
|
|
{
|
|
// Since we copy from a ring buffer FIFO, a wrap might occur making it necessary to conduct two copies
|
|
tu_fifo_buffer_info_t info;
|
|
tu_fifo_get_read_info(ff, &info);
|
|
|
|
uint16_t cnt_lin = TU_MIN(wNBytes, info.len_lin);
|
|
uint16_t cnt_wrap = TU_MIN(wNBytes - cnt_lin, info.len_wrap);
|
|
|
|
// We want to read from the FIFO and write it into the PMA, if LIN part is ODD and has WRAPPED part,
|
|
// last lin byte will be combined with wrapped part
|
|
// To ensure PMA is always access aligned (dst aligned to 16 or 32 bit)
|
|
#ifdef PMA_32BIT_ACCESS
|
|
if((cnt_lin & 0x03) && cnt_wrap)
|
|
{
|
|
// Copy first linear part
|
|
dcd_write_packet_memory(dst, info.ptr_lin, cnt_lin &~0x03);
|
|
dst += cnt_lin &~0x03;
|
|
|
|
// Copy last linear bytes & first wrapped bytes to buffer
|
|
uint32_t i;
|
|
uint8_t tmp[4];
|
|
for (i = 0; i < (cnt_lin & 0x03); i++)
|
|
{
|
|
tmp[i] = ((uint8_t*)info.ptr_lin)[(cnt_lin &~0x03) + i];
|
|
}
|
|
uint32_t wCnt = cnt_wrap;
|
|
for (; i < 4 && wCnt > 0; i++, wCnt--)
|
|
{
|
|
tmp[i] = *(uint8_t*)info.ptr_wrap;
|
|
info.ptr_wrap = (uint8_t*)info.ptr_wrap + 1;
|
|
}
|
|
|
|
// Write unaligned buffer
|
|
dcd_write_packet_memory(dst, &tmp, 4);
|
|
dst += 4;
|
|
|
|
// Copy rest of wrapped byte
|
|
if (wCnt)
|
|
dcd_write_packet_memory(dst, info.ptr_wrap, wCnt);
|
|
}
|
|
#else
|
|
if((cnt_lin & 0x01) && cnt_wrap)
|
|
{
|
|
// Copy first linear part
|
|
dcd_write_packet_memory(dst, info.ptr_lin, cnt_lin &~0x01);
|
|
dst += cnt_lin &~0x01;
|
|
|
|
// Copy last linear byte & first wrapped byte
|
|
uint16_t tmp = ((uint8_t*)info.ptr_lin)[cnt_lin - 1] | ((uint16_t)(((uint8_t*)info.ptr_wrap)[0]) << 8U);
|
|
dcd_write_packet_memory(dst, &tmp, 2);
|
|
dst += 2;
|
|
|
|
// Copy rest of wrapped byte
|
|
dcd_write_packet_memory(dst, ((uint8_t*)info.ptr_wrap) + 1, cnt_wrap - 1);
|
|
}
|
|
#endif
|
|
else
|
|
{
|
|
// Copy linear part
|
|
dcd_write_packet_memory(dst, info.ptr_lin, cnt_lin);
|
|
dst += info.len_lin;
|
|
|
|
if(info.len_wrap)
|
|
{
|
|
// Copy wrapped byte
|
|
dcd_write_packet_memory(dst, info.ptr_wrap, cnt_wrap);
|
|
}
|
|
}
|
|
|
|
tu_fifo_advance_read_pointer(ff, cnt_lin + cnt_wrap);
|
|
|
|
return true;
|
|
}
|
|
|
|
#ifdef PMA_32BIT_ACCESS
|
|
static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, uint16_t wNBytes)
|
|
{
|
|
uint8_t* dstVal = dst;
|
|
volatile uint32_t* src32 = (volatile uint32_t*)(USB_PMAADDR + src);
|
|
|
|
for (uint32_t n = wNBytes / 4; n > 0; --n) {
|
|
tu_unaligned_write32(dstVal, *src32++);
|
|
dstVal += 4;
|
|
}
|
|
|
|
wNBytes = wNBytes & 0x03;
|
|
if (wNBytes)
|
|
{
|
|
uint32_t rdVal = *src32;
|
|
|
|
*dstVal = tu_u32_byte0(rdVal);
|
|
wNBytes--;
|
|
|
|
if (wNBytes)
|
|
{
|
|
*++dstVal = tu_u32_byte1(rdVal);
|
|
wNBytes--;
|
|
|
|
if (wNBytes)
|
|
{
|
|
*++dstVal = tu_u32_byte2(rdVal);
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#else
|
|
/**
|
|
* @brief Copy a buffer from packet memory area (PMA) to user memory area.
|
|
* Uses byte-access of system memory and 16-bit access of packet memory
|
|
* @param wNBytes no. of bytes to be copied.
|
|
* @retval None
|
|
*/
|
|
static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, uint16_t wNBytes)
|
|
{
|
|
uint32_t n = (uint32_t)wNBytes >> 1U;
|
|
// The GCC optimizer will combine access to 32-bit sizes if we let it. Force
|
|
// it volatile so that it won't do that.
|
|
__IO const uint16_t *pdwVal;
|
|
uint32_t temp;
|
|
|
|
pdwVal = &pma[PMA_STRIDE*(src>>1)];
|
|
uint8_t *dstVal = (uint8_t*)dst;
|
|
|
|
while (n--)
|
|
{
|
|
temp = *pdwVal;
|
|
pdwVal += PMA_STRIDE;
|
|
*dstVal++ = ((temp >> 0) & 0xFF);
|
|
*dstVal++ = ((temp >> 8) & 0xFF);
|
|
}
|
|
|
|
if (wNBytes & 0x01)
|
|
{
|
|
temp = *pdwVal;
|
|
pdwVal += PMA_STRIDE;
|
|
*dstVal++ = ((temp >> 0) & 0xFF);
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @brief Copy a buffer from user packet memory area (PMA) to FIFO.
|
|
* Uses byte-access of system memory and 16-bit access of packet memory
|
|
* @param wNBytes no. of bytes to be copied.
|
|
* @retval None
|
|
*/
|
|
static bool dcd_read_packet_memory_ff(tu_fifo_t * ff, uint16_t src, uint16_t wNBytes)
|
|
{
|
|
// Since we copy into a ring buffer FIFO, a wrap might occur making it necessary to conduct two copies
|
|
// Check for first linear part
|
|
tu_fifo_buffer_info_t info;
|
|
tu_fifo_get_write_info(ff, &info); // We want to read from the FIFO
|
|
|
|
uint16_t cnt_lin = TU_MIN(wNBytes, info.len_lin);
|
|
uint16_t cnt_wrap = TU_MIN(wNBytes - cnt_lin, info.len_wrap);
|
|
|
|
|
|
// We want to read from PMA and write it into the FIFO, if LIN part is ODD and has WRAPPED part,
|
|
// last lin byte will be combined with wrapped part
|
|
// To ensure PMA is always access aligned (src aligned to 16 or 32 bit)
|
|
#ifdef PMA_32BIT_ACCESS
|
|
if((cnt_lin & 0x03) && cnt_wrap)
|
|
{
|
|
// Copy first linear part
|
|
dcd_read_packet_memory(info.ptr_lin, src, cnt_lin &~0x03);
|
|
src += cnt_lin &~0x03;
|
|
|
|
// Copy last linear bytes & first wrapped bytes
|
|
uint8_t tmp[4];
|
|
dcd_read_packet_memory(tmp, src, 4);
|
|
src += 4;
|
|
|
|
uint32_t i;
|
|
for (i = 0; i < (cnt_lin & 0x03); i++)
|
|
{
|
|
((uint8_t*)info.ptr_lin)[(cnt_lin &~0x03) + i] = tmp[i];
|
|
}
|
|
uint32_t wCnt = cnt_wrap;
|
|
for (; i < 4 && wCnt > 0; i++, wCnt--)
|
|
{
|
|
*(uint8_t*)info.ptr_wrap = tmp[i];
|
|
info.ptr_wrap = (uint8_t*)info.ptr_wrap + 1;
|
|
}
|
|
|
|
// Copy rest of wrapped byte
|
|
if (wCnt)
|
|
dcd_read_packet_memory(info.ptr_wrap, src, wCnt);
|
|
}
|
|
#else
|
|
if((cnt_lin & 0x01) && cnt_wrap)
|
|
{
|
|
// Copy first linear part
|
|
dcd_read_packet_memory(info.ptr_lin, src, cnt_lin &~0x01);
|
|
src += cnt_lin &~0x01;
|
|
|
|
// Copy last linear byte & first wrapped byte
|
|
uint8_t tmp[2];
|
|
dcd_read_packet_memory(tmp, src, 2);
|
|
src += 2;
|
|
|
|
((uint8_t*)info.ptr_lin)[cnt_lin - 1] = tmp[0];
|
|
((uint8_t*)info.ptr_wrap)[0] = tmp[1];
|
|
|
|
// Copy rest of wrapped byte
|
|
dcd_read_packet_memory(((uint8_t*)info.ptr_wrap) + 1, src, cnt_wrap - 1);
|
|
}
|
|
#endif
|
|
else
|
|
{
|
|
// Copy linear part
|
|
dcd_read_packet_memory(info.ptr_lin, src, cnt_lin);
|
|
src += cnt_lin;
|
|
|
|
if(info.len_wrap)
|
|
{
|
|
// Copy wrapped byte
|
|
dcd_read_packet_memory(info.ptr_wrap, src, cnt_wrap);
|
|
}
|
|
}
|
|
|
|
tu_fifo_advance_write_pointer(ff, cnt_lin + cnt_wrap);
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif
|