989 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			989 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * The MIT License (MIT)
 | |
|  *
 | |
|  * Copyright (c) 2018 Scott Shawcroft, 2019 William D. Jones for Adafruit Industries
 | |
|  * Copyright (c) 2019 Ha Thach (tinyusb.org)
 | |
|  * Copyright (c) 2020 Jan Duempelmann
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
|  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
|  *
 | |
|  * This file is part of the TinyUSB stack.
 | |
|  */
 | |
| 
 | |
| #include "tusb_option.h"
 | |
| #include "../../../../hw/bsp//board.h"
 | |
| 
 | |
| #if defined (STM32F105x8) || defined (STM32F105xB) || defined (STM32F105xC) || \
 | |
|     defined (STM32F107xB) || defined (STM32F107xC)
 | |
| #define STM32F1_SYNOPSYS
 | |
| #endif
 | |
| 
 | |
| #if defined (STM32L475xx) || defined (STM32L476xx) ||                          \
 | |
|     defined (STM32L485xx) || defined (STM32L486xx) || defined (STM32L496xx) || \
 | |
|     defined (STM32L4R5xx) || defined (STM32L4R7xx) || defined (STM32L4R9xx) || \
 | |
|     defined (STM32L4S5xx) || defined (STM32L4S7xx) || defined (STM32L4S9xx)
 | |
| #define STM32L4_SYNOPSYS
 | |
| #endif
 | |
| 
 | |
| #if TUSB_OPT_DEVICE_ENABLED && \
 | |
|     ( (CFG_TUSB_MCU == OPT_MCU_STM32F1 && defined(STM32F1_SYNOPSYS)) || \
 | |
|       CFG_TUSB_MCU == OPT_MCU_STM32F2 || \
 | |
|       CFG_TUSB_MCU == OPT_MCU_STM32F4 || \
 | |
|       CFG_TUSB_MCU == OPT_MCU_STM32F7 || \
 | |
|       CFG_TUSB_MCU == OPT_MCU_STM32H7 || \
 | |
|       (CFG_TUSB_MCU == OPT_MCU_STM32L4 && defined(STM32L4_SYNOPSYS)) \
 | |
|     )
 | |
| 
 | |
| // EP_MAX       : Max number of bi-directional endpoints including EP0
 | |
| // EP_FIFO_SIZE : Size of dedicated USB SRAM
 | |
| #if CFG_TUSB_MCU == OPT_MCU_STM32F1
 | |
|   #include "stm32f1xx.h"
 | |
|   #define EP_MAX_FS       4
 | |
|   #define EP_FIFO_SIZE_FS 1280
 | |
| 
 | |
| #elif CFG_TUSB_MCU == OPT_MCU_STM32F2
 | |
|   #include "stm32f2xx.h"
 | |
|   #define EP_MAX_FS       USB_OTG_FS_MAX_IN_ENDPOINTS
 | |
|   #define EP_FIFO_SIZE_FS USB_OTG_FS_TOTAL_FIFO_SIZE
 | |
| 
 | |
| #elif CFG_TUSB_MCU == OPT_MCU_STM32F4
 | |
|   #include "stm32f4xx.h"
 | |
|   #define EP_MAX_FS       USB_OTG_FS_MAX_IN_ENDPOINTS
 | |
|   #define EP_FIFO_SIZE_FS USB_OTG_FS_TOTAL_FIFO_SIZE
 | |
|   #define EP_MAX_HS       USB_OTG_HS_MAX_IN_ENDPOINTS
 | |
|   #define EP_FIFO_SIZE_HS USB_OTG_HS_TOTAL_FIFO_SIZE
 | |
| 
 | |
| #elif CFG_TUSB_MCU == OPT_MCU_STM32H7
 | |
|   #include "stm32h7xx.h"
 | |
|   #define EP_MAX_FS       9
 | |
|   #define EP_FIFO_SIZE_FS 4096
 | |
|   #define EP_MAX_HS       9
 | |
|   #define EP_FIFO_SIZE_HS 4096
 | |
| 
 | |
| #elif CFG_TUSB_MCU == OPT_MCU_STM32F7
 | |
|   #include "stm32f7xx.h"
 | |
|   #define EP_MAX_FS       6
 | |
|   #define EP_FIFO_SIZE_FS 1280
 | |
|   #define EP_MAX_HS       9
 | |
|   #define EP_FIFO_SIZE_HS 4096
 | |
| 
 | |
| #elif CFG_TUSB_MCU == OPT_MCU_STM32L4
 | |
|   #include "stm32l4xx.h"
 | |
|   #define EP_MAX_FS       6
 | |
|   #define EP_FIFO_SIZE_FS 1280
 | |
| 
 | |
| #else
 | |
|   #error "Unsupported MCUs"
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #include "device/dcd.h"
 | |
| 
 | |
| //--------------------------------------------------------------------+
 | |
| //
 | |
| //--------------------------------------------------------------------+
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
|   uint32_t regs;  // registers
 | |
|   const IRQn_Type irqnum; // IRQ number
 | |
| //  const uint8_t ep_count; // Max bi-directional Endpoints
 | |
| }dcd_rhport_t;
 | |
| 
 | |
| // To be consistent across stm32 port. We will number OTG_FS as Rhport0, and OTG_HS as Rhport1
 | |
| static const dcd_rhport_t _dcd_rhport[] =
 | |
| {
 | |
|   { .regs = USB_OTG_FS_PERIPH_BASE, .irqnum = OTG_FS_IRQn }
 | |
| 
 | |
| #ifdef USB_OTG_HS
 | |
|  ,{ .regs = USB_OTG_HS_PERIPH_BASE, .irqnum = OTG_HS_IRQn }
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #define GLOBAL_BASE(_port)     ((USB_OTG_GlobalTypeDef*) _dcd_rhport[_port].regs)
 | |
| #define DEVICE_BASE(_port)     (USB_OTG_DeviceTypeDef *) (_dcd_rhport[_port].regs + USB_OTG_DEVICE_BASE)
 | |
| #define OUT_EP_BASE(_port)     (USB_OTG_OUTEndpointTypeDef *) (_dcd_rhport[_port].regs + USB_OTG_OUT_ENDPOINT_BASE)
 | |
| #define IN_EP_BASE(_port)      (USB_OTG_INEndpointTypeDef *) (_dcd_rhport[_port].regs + USB_OTG_IN_ENDPOINT_BASE)
 | |
| #define FIFO_BASE(_port, _x)   ((volatile uint32_t *) (_dcd_rhport[_port].regs + USB_OTG_FIFO_BASE + (_x) * USB_OTG_FIFO_SIZE))
 | |
| 
 | |
| enum
 | |
| {
 | |
|   DCD_HIGH_SPEED        = 0, // Highspeed mode
 | |
|   DCD_FULL_SPEED_USE_HS = 1, // Full speed in Highspeed port (probably with internal PHY)
 | |
|   DCD_FULL_SPEED        = 3, // Full speed with internal PHY
 | |
| };
 | |
| 
 | |
| /*------------------------------------------------------------------*/
 | |
| /* MACRO TYPEDEF CONSTANT ENUM
 | |
|  *------------------------------------------------------------------*/
 | |
| 
 | |
| // Since TinyUSB doesn't use SOF for now, and this interrupt too often (1ms interval)
 | |
| // We disable SOF for now until needed later on
 | |
| #define USE_SOF     0
 | |
| 
 | |
| static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[2];
 | |
| 
 | |
| typedef struct {
 | |
|   uint8_t * buffer;
 | |
|   uint16_t total_len;
 | |
|   uint16_t max_size;
 | |
| } xfer_ctl_t;
 | |
| 
 | |
| typedef volatile uint32_t * usb_fifo_t;
 | |
| 
 | |
| #if TUD_OPT_RHPORT == 1
 | |
| # define EP_MAX EP_MAX_HS
 | |
| # define EP_FIFO_SIZE EP_FIFO_SIZE_HS
 | |
| #else
 | |
| # define EP_MAX EP_MAX_FS
 | |
| # define EP_FIFO_SIZE EP_FIFO_SIZE_FS
 | |
| #endif
 | |
| xfer_ctl_t xfer_status[EP_MAX][2];
 | |
| #define XFER_CTL_BASE(_ep, _dir) &xfer_status[_ep][_dir]
 | |
| 
 | |
| // EP0 transfers are limited to 1 packet - larger sizes has to be split
 | |
| static uint16_t ep0_pending[2];     // Index determines direction as tusb_dir_t type
 | |
| 
 | |
| // FIFO RAM allocation so far in words
 | |
| static uint16_t _allocated_fifo_words;
 | |
| 
 | |
| // Setup the control endpoint 0.
 | |
| static void bus_reset(uint8_t rhport)
 | |
| {
 | |
|   USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
 | |
|   USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
 | |
|   USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
 | |
|   USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
 | |
| 
 | |
|   tu_memclr(xfer_status, sizeof(xfer_status));
 | |
| 
 | |
|   for(uint8_t n = 0; n < EP_MAX; n++) {
 | |
|     out_ep[n].DOEPCTL |= USB_OTG_DOEPCTL_SNAK;
 | |
|   }
 | |
| 
 | |
|   dev->DAINTMSK |= (1 << USB_OTG_DAINTMSK_OEPM_Pos) | (1 << USB_OTG_DAINTMSK_IEPM_Pos);
 | |
|   dev->DOEPMSK |= USB_OTG_DOEPMSK_STUPM | USB_OTG_DOEPMSK_XFRCM;
 | |
|   dev->DIEPMSK |= USB_OTG_DIEPMSK_TOM | USB_OTG_DIEPMSK_XFRCM;
 | |
| 
 | |
|   // "USB Data FIFOs" section in reference manual
 | |
|   // Peripheral FIFO architecture
 | |
|   //
 | |
|   // --------------- 320 or 1024 ( 1280 or 4096 bytes )
 | |
|   // | IN FIFO MAX |
 | |
|   // ---------------
 | |
|   // |    ...      |
 | |
|   // --------------- y + x + 16 + GRXFSIZ
 | |
|   // | IN FIFO 2   |
 | |
|   // --------------- x + 16 + GRXFSIZ
 | |
|   // | IN FIFO 1   |
 | |
|   // --------------- 16 + GRXFSIZ
 | |
|   // | IN FIFO 0   |
 | |
|   // --------------- GRXFSIZ
 | |
|   // | OUT FIFO    |
 | |
|   // | ( Shared )  |
 | |
|   // --------------- 0
 | |
|   //
 | |
|   // According to "FIFO RAM allocation" section in RM, FIFO RAM are allocated as follows (each word 32-bits):
 | |
|   // - Each EP IN needs at least max packet size, 16 words is sufficient for EP0 IN
 | |
|   //
 | |
|   // - All EP OUT shared a unique OUT FIFO which uses
 | |
|   //   - 13 for setup packets + control words (up to 3 setup packets).
 | |
|   //   - 1 for global NAK (not required/used here).
 | |
|   //   - Largest-EPsize / 4 + 1. ( FS: 64 bytes, HS: 512 bytes). Recommended is  "2 x (Largest-EPsize/4) + 1"
 | |
|   //   - 2 for each used OUT endpoint
 | |
|   //
 | |
|   //   Therefore GRXFSIZ = 13 + 1 + 1 + 2 x (Largest-EPsize/4) + 2 x EPOUTnum
 | |
|   //   - FullSpeed (64 Bytes ): GRXFSIZ = 15 + 2 x  16 + 2 x EP_MAX = 47  + 2 x EP_MAX
 | |
|   //   - Highspeed (512 bytes): GRXFSIZ = 15 + 2 x 128 + 2 x EP_MAX = 271 + 2 x EP_MAX
 | |
|   //
 | |
|   //   NOTE: Largest-EPsize & EPOUTnum is actual used endpoints in configuration. Since DCD has no knowledge
 | |
|   //   of the overall picture yet. We will use the worst scenario: largest possible + EP_MAX
 | |
|   //
 | |
|   //   FIXME: for Isochronous, largest EP size can be 1023/1024 for FS/HS respectively. In addition if multiple ISO
 | |
|   //   are enabled at least "2 x (Largest-EPsize/4) + 1" are recommended.  Maybe provide a macro for application to
 | |
|   //   overwrite this.
 | |
| 
 | |
| #if TUD_OPT_HIGH_SPEED
 | |
|   _allocated_fifo_words = 271 + 2*EP_MAX;
 | |
| #else
 | |
|   _allocated_fifo_words =  47 + 2*EP_MAX;
 | |
| #endif
 | |
| 
 | |
|   usb_otg->GRXFSIZ = _allocated_fifo_words;
 | |
| 
 | |
|   // Control IN uses FIFO 0 with 64 bytes ( 16 32-bit word )
 | |
|   usb_otg->DIEPTXF0_HNPTXFSIZ = (16 << USB_OTG_TX0FD_Pos) | _allocated_fifo_words;
 | |
| 
 | |
|   _allocated_fifo_words += 16;
 | |
| 
 | |
|   // TU_LOG2_INT(_allocated_fifo_words);
 | |
| 
 | |
|   // Fixed control EP0 size to 64 bytes
 | |
|   in_ep[0].DIEPCTL &= ~(0x03 << USB_OTG_DIEPCTL_MPSIZ_Pos);
 | |
|   xfer_status[0][TUSB_DIR_OUT].max_size = xfer_status[0][TUSB_DIR_IN].max_size = 64;
 | |
| 
 | |
|   out_ep[0].DOEPTSIZ |= (3 << USB_OTG_DOEPTSIZ_STUPCNT_Pos);
 | |
| 
 | |
|   usb_otg->GINTMSK |= USB_OTG_GINTMSK_OEPINT | USB_OTG_GINTMSK_IEPINT;
 | |
| }
 | |
| 
 | |
| // Set turn-around timeout according to link speed
 | |
| static void set_turnaround(USB_OTG_GlobalTypeDef * usb_otg, tusb_speed_t speed)
 | |
| {
 | |
|   usb_otg->GUSBCFG &= ~USB_OTG_GUSBCFG_TRDT;
 | |
| 
 | |
|   if ( speed == TUSB_SPEED_HIGH )
 | |
|   {
 | |
|     // Use fixed 0x09 for Highspeed
 | |
|     usb_otg->GUSBCFG |= (0x09 << USB_OTG_GUSBCFG_TRDT_Pos);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     // Fullspeed depends on MCU clocks, but we will use 0x06 for 32+ Mhz
 | |
|     usb_otg->GUSBCFG |= (0x06 << USB_OTG_GUSBCFG_TRDT_Pos);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static tusb_speed_t get_speed(USB_OTG_DeviceTypeDef* dev)
 | |
| {
 | |
|   uint32_t const enum_spd = (dev->DSTS & USB_OTG_DSTS_ENUMSPD_Msk) >> USB_OTG_DSTS_ENUMSPD_Pos;
 | |
|   return (enum_spd == DCD_HIGH_SPEED) ? TUSB_SPEED_HIGH : TUSB_SPEED_FULL;
 | |
| }
 | |
| 
 | |
| static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t const dir, uint16_t const num_packets, uint16_t total_bytes) {
 | |
|   USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
 | |
|   USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
 | |
|   USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
 | |
| 
 | |
|   // EP0 is limited to one packet each xfer
 | |
|   // We use multiple transaction of xfer->max_size length to get a whole transfer done
 | |
|   if(epnum == 0) {
 | |
|     xfer_ctl_t * const xfer = XFER_CTL_BASE(epnum, dir);
 | |
|     total_bytes = tu_min16(ep0_pending[dir], xfer->max_size);
 | |
|     ep0_pending[dir] -= total_bytes;
 | |
|   }
 | |
| 
 | |
|   // IN and OUT endpoint xfers are interrupt-driven, we just schedule them here.
 | |
|   if(dir == TUSB_DIR_IN) {
 | |
|     // A full IN transfer (multiple packets, possibly) triggers XFRC.
 | |
|     in_ep[epnum].DIEPTSIZ = (num_packets << USB_OTG_DIEPTSIZ_PKTCNT_Pos) |
 | |
|         ((total_bytes << USB_OTG_DIEPTSIZ_XFRSIZ_Pos) & USB_OTG_DIEPTSIZ_XFRSIZ_Msk);
 | |
| 
 | |
|     in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_EPENA | USB_OTG_DIEPCTL_CNAK;
 | |
|     // Enable fifo empty interrupt only if there are something to put in the fifo.
 | |
|     if(total_bytes != 0) {
 | |
|       dev->DIEPEMPMSK |= (1 << epnum);
 | |
|     }
 | |
|   } else {
 | |
|     // A full OUT transfer (multiple packets, possibly) triggers XFRC.
 | |
|     out_ep[epnum].DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_PKTCNT_Msk | USB_OTG_DOEPTSIZ_XFRSIZ);
 | |
|     out_ep[epnum].DOEPTSIZ |= (num_packets << USB_OTG_DOEPTSIZ_PKTCNT_Pos) |
 | |
|         ((total_bytes << USB_OTG_DOEPTSIZ_XFRSIZ_Pos) & USB_OTG_DOEPTSIZ_XFRSIZ_Msk);
 | |
| 
 | |
|     out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_EPENA | USB_OTG_DOEPCTL_CNAK;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| # if defined(USB_HS_PHYC) && TUD_OPT_HIGH_SPEED
 | |
| static bool USB_HS_PHYCInit(void)
 | |
| {
 | |
|     USB_HS_PHYC_GlobalTypeDef *usb_hs_phyc = (USB_HS_PHYC_GlobalTypeDef *)USB_HS_PHYC_CONTROLLER_BASE;
 | |
|     // Enable LDO
 | |
|     usb_hs_phyc->USB_HS_PHYC_LDO |= USB_HS_PHYC_LDO_ENABLE;
 | |
|     int32_t count = 2000000;
 | |
|     while(1) {
 | |
|         if (usb_hs_phyc->USB_HS_PHYC_LDO & USB_HS_PHYC_LDO_STATUS)
 | |
|             break;
 | |
|         TU_ASSERT(count > 0);
 | |
|     }
 | |
|     uint32_t  phyc_pll = 0;
 | |
|     switch (HSE_VALUE) {
 | |
|     case 12000000:
 | |
|         phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_12MHZ;
 | |
|         break;
 | |
|     case 12500000:
 | |
|         phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_12_5MHZ;
 | |
|         break;
 | |
|     case 16000000:
 | |
|         phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_16MHZ;
 | |
|         break;
 | |
|     case 24000000:
 | |
|         phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_24MHZ;
 | |
|         break;
 | |
|     case 25000000:
 | |
|         phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_25MHZ;
 | |
|         break;
 | |
|     case 32000000:
 | |
|         // Value not defined in header
 | |
|         phyc_pll =   USB_HS_PHYC_PLL1_PLLSEL_Msk;
 | |
|         break;
 | |
|     default:
 | |
|         TU_ASSERT(0);
 | |
|     }
 | |
|     usb_hs_phyc->USB_HS_PHYC_PLL = phyc_pll;
 | |
| 
 | |
|     // Use magic value as in stm32f7xx_ll_usb.
 | |
| #  if !defined  (USB_HS_PHYC_TUNE_VALUE)
 | |
| #  define USB_HS_PHYC_TUNE_VALUE    0x00000F13U /*!< Value of USB HS PHY Tune */
 | |
| #  endif /* USB_HS_PHYC_TUNE_VALUE */
 | |
|     // Control the tuning interface of the High Speed PHY */
 | |
|     usb_hs_phyc->USB_HS_PHYC_TUNE |= USB_HS_PHYC_TUNE_VALUE;
 | |
| 
 | |
|     // Enable PLL internal PHY
 | |
|     usb_hs_phyc->USB_HS_PHYC_PLL = phyc_pll | USB_HS_PHYC_PLL_PLLEN;
 | |
| 
 | |
|     board_delay(2);
 | |
|     return true;
 | |
| }
 | |
| # endif
 | |
| 
 | |
| /*------------------------------------------------------------------*/
 | |
| /* Controller API
 | |
|  *------------------------------------------------------------------*/
 | |
| void dcd_init (uint8_t rhport)
 | |
| {
 | |
|   // Programming model begins in the last section of the chapter on the USB
 | |
|   // peripheral in each Reference Manual.
 | |
| 
 | |
|   USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
 | |
| 
 | |
|   // No HNP/SRP (no OTG support), program timeout later.
 | |
| #if TUD_OPT_HIGH_SPEED   // TODO may pass parameter instead of using macro for HighSpeed
 | |
|   if ( rhport == 1 )
 | |
|   {
 | |
|     // On selected MCUs HS port1 can be used with external PHY via ULPI interface
 | |
| 
 | |
|     // deactivate internal PHY
 | |
|     usb_otg->GCCFG &= ~USB_OTG_GCCFG_PWRDWN;
 | |
| 
 | |
|     // Init The UTMI Interface
 | |
|     usb_otg->GUSBCFG &= ~(USB_OTG_GUSBCFG_TSDPS | USB_OTG_GUSBCFG_ULPIFSLS | USB_OTG_GUSBCFG_PHYSEL);
 | |
| 
 | |
|     // Select default internal VBUS Indicator and Drive for ULPI
 | |
|     usb_otg->GUSBCFG &= ~(USB_OTG_GUSBCFG_ULPIEVBUSD | USB_OTG_GUSBCFG_ULPIEVBUSI);
 | |
| 
 | |
| #if defined(USB_HS_PHYC)
 | |
|     // Highspeed with embedded UTMI PHYC
 | |
| 
 | |
|     // Select UTMI Interface
 | |
|     usb_otg->GUSBCFG &= ~USB_OTG_GUSBCFG_ULPI_UTMI_SEL;
 | |
|     usb_otg->GCCFG |= USB_OTG_GCCFG_PHYHSEN;
 | |
| 
 | |
|     // Enables control of a High Speed USB PHY
 | |
|     USB_HS_PHYCInit();
 | |
| 
 | |
|     // Disable external VBUS detection
 | |
|     usb_otg->GUSBCFG &= ~USB_OTG_GUSBCFG_ULPIEVBUSD;
 | |
| #endif
 | |
| 
 | |
|     // Highspeed with external ULPI PHY
 | |
|     set_turnaround(usb_otg, TUSB_SPEED_HIGH);
 | |
|   } else
 | |
| #endif
 | |
|   {
 | |
|     // Enable internal PHY
 | |
|     usb_otg->GUSBCFG |= USB_OTG_GUSBCFG_PHYSEL;
 | |
| 
 | |
|     set_turnaround(usb_otg, TUSB_SPEED_FULL);
 | |
|   }
 | |
| 
 | |
|   // Reset core after selecting PHY
 | |
|   // Wait AHB IDLE, reset then wait until it is cleared
 | |
|   while ((usb_otg->GRSTCTL & USB_OTG_GRSTCTL_AHBIDL) == 0U) {}
 | |
|   usb_otg->GRSTCTL |= USB_OTG_GRSTCTL_CSRST;
 | |
|   while ((usb_otg->GRSTCTL & USB_OTG_GRSTCTL_CSRST) == USB_OTG_GRSTCTL_CSRST) {}
 | |
| 
 | |
|   // Restart PHY clock
 | |
|   *((volatile uint32_t *)(_dcd_rhport[rhport].regs + USB_OTG_PCGCCTL_BASE)) = 0;
 | |
| 
 | |
|   // Clear all interrupts
 | |
|   usb_otg->GINTSTS |= usb_otg->GINTSTS;
 | |
| 
 | |
|   // Required as part of core initialization.
 | |
|   // TODO: How should mode mismatch be handled? It will cause
 | |
|   // the core to stop working/require reset.
 | |
|   usb_otg->GINTMSK |= USB_OTG_GINTMSK_OTGINT | USB_OTG_GINTMSK_MMISM;
 | |
| 
 | |
|   USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
 | |
| 
 | |
|   // If USB host misbehaves during status portion of control xfer
 | |
|   // (non zero-length packet), send STALL back and discard.
 | |
|   dev->DCFG |=  USB_OTG_DCFG_NZLSOHSK;
 | |
| 
 | |
|   // Clear speed bits
 | |
|   dev->DCFG &= ~(3 << USB_OTG_DCFG_DSPD_Pos);
 | |
| 
 | |
|   if ( rhport == 1 )
 | |
|   {
 | |
|     if ( !TUD_OPT_HIGH_SPEED ) dev->DCFG |= ((TUD_OPT_HIGH_SPEED ? DCD_HIGH_SPEED : DCD_FULL_SPEED_USE_HS) << USB_OTG_DCFG_DSPD_Pos);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     // full speed = 0x03
 | |
|     dev->DCFG |= (DCD_FULL_SPEED << USB_OTG_DCFG_DSPD_Pos);
 | |
| 
 | |
|     // Enable internal USB transceiver.
 | |
|     usb_otg->GCCFG |= USB_OTG_GCCFG_PWRDWN;
 | |
|   }
 | |
| 
 | |
|   usb_otg->GINTMSK |= USB_OTG_GINTMSK_USBRST   | USB_OTG_GINTMSK_ENUMDNEM |
 | |
|                       USB_OTG_GINTMSK_USBSUSPM | USB_OTG_GINTMSK_WUIM     |
 | |
|                       USB_OTG_GINTMSK_RXFLVLM  | (USE_SOF ? USB_OTG_GINTMSK_SOFM : 0);
 | |
| 
 | |
|   // Enable global interrupt
 | |
|   usb_otg->GAHBCFG |= USB_OTG_GAHBCFG_GINT;
 | |
| }
 | |
| 
 | |
| void dcd_int_enable (uint8_t rhport)
 | |
| {
 | |
|   NVIC_EnableIRQ(_dcd_rhport[rhport].irqnum);
 | |
| }
 | |
| 
 | |
| void dcd_int_disable (uint8_t rhport)
 | |
| {
 | |
|   NVIC_EnableIRQ(_dcd_rhport[rhport].irqnum);
 | |
| }
 | |
| 
 | |
| void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
 | |
| {
 | |
|   USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
 | |
|   dev->DCFG |= (dev_addr << USB_OTG_DCFG_DAD_Pos) & USB_OTG_DCFG_DAD_Msk;
 | |
| 
 | |
|   // Response with status after changing device address
 | |
|   dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
 | |
| }
 | |
| 
 | |
| void dcd_remote_wakeup(uint8_t rhport)
 | |
| {
 | |
|   (void) rhport;
 | |
| }
 | |
| 
 | |
| void dcd_connect(uint8_t rhport)
 | |
| {
 | |
|   USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
 | |
| 
 | |
|   dev->DCTL &= ~USB_OTG_DCTL_SDIS;
 | |
| }
 | |
| 
 | |
| void dcd_disconnect(uint8_t rhport)
 | |
| {
 | |
|   USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
 | |
| 
 | |
|   dev->DCTL |= USB_OTG_DCTL_SDIS;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*------------------------------------------------------------------*/
 | |
| /* DCD Endpoint port
 | |
|  *------------------------------------------------------------------*/
 | |
| 
 | |
| bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
 | |
| {
 | |
|   USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
 | |
|   USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
 | |
|   USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
 | |
|   USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
 | |
| 
 | |
|   uint8_t const epnum = tu_edpt_number(desc_edpt->bEndpointAddress);
 | |
|   uint8_t const dir   = tu_edpt_dir(desc_edpt->bEndpointAddress);
 | |
| 
 | |
|   TU_ASSERT(epnum < EP_MAX);
 | |
| 
 | |
|   // TODO ISO endpoint can be up to 1024 bytes
 | |
|   TU_ASSERT(desc_edpt->wMaxPacketSize.size <= (get_speed(dev) == TUSB_SPEED_HIGH ? 512 : 64));
 | |
| 
 | |
|   xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
 | |
|   xfer->max_size = desc_edpt->wMaxPacketSize.size;
 | |
| 
 | |
|   if(dir == TUSB_DIR_OUT)
 | |
|   {
 | |
|     out_ep[epnum].DOEPCTL |= (1 << USB_OTG_DOEPCTL_USBAEP_Pos) |
 | |
|                              (desc_edpt->bmAttributes.xfer << USB_OTG_DOEPCTL_EPTYP_Pos) |
 | |
|                              (desc_edpt->wMaxPacketSize.size << USB_OTG_DOEPCTL_MPSIZ_Pos);
 | |
| 
 | |
|     dev->DAINTMSK |= (1 << (USB_OTG_DAINTMSK_OEPM_Pos + epnum));
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     // "USB Data FIFOs" section in reference manual
 | |
|     // Peripheral FIFO architecture
 | |
|     //
 | |
|     // --------------- 320 or 1024 ( 1280 or 4096 bytes )
 | |
|     // | IN FIFO MAX |
 | |
|     // ---------------
 | |
|     // |    ...      |
 | |
|     // --------------- y + x + 16 + GRXFSIZ
 | |
|     // | IN FIFO 2   |
 | |
|     // --------------- x + 16 + GRXFSIZ
 | |
|     // | IN FIFO 1   |
 | |
|     // --------------- 16 + GRXFSIZ
 | |
|     // | IN FIFO 0   |
 | |
|     // --------------- GRXFSIZ
 | |
|     // | OUT FIFO    |
 | |
|     // | ( Shared )  |
 | |
|     // --------------- 0
 | |
|     //
 | |
|     // In FIFO is allocated by following rules:
 | |
|     // - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n".
 | |
|     // - Offset: allocated so far
 | |
|     // - Size
 | |
|     //    - Interrupt is EPSize
 | |
|     //    - Bulk/ISO is max(EPSize, remaining-fifo / non-opened-EPIN)
 | |
| 
 | |
|     uint16_t const fifo_remaining = EP_FIFO_SIZE/4 - _allocated_fifo_words;
 | |
|     uint16_t fifo_size = desc_edpt->wMaxPacketSize.size / 4;
 | |
| 
 | |
|     if ( desc_edpt->bmAttributes.xfer != TUSB_XFER_INTERRUPT )
 | |
|     {
 | |
|       uint8_t opened = 0;
 | |
|       for(uint8_t i = 0; i < EP_MAX; i++)
 | |
|       {
 | |
|         if ( (i != epnum) && (xfer_status[i][TUSB_DIR_IN].max_size > 0) ) opened++;
 | |
|       }
 | |
| 
 | |
|       // EP Size or equally divided of remaining whichever is larger
 | |
|       fifo_size = tu_max16(fifo_size, fifo_remaining / (EP_MAX - opened));
 | |
|     }
 | |
| 
 | |
|     // FIFO overflows, we probably need a better allocating scheme
 | |
|     TU_ASSERT(fifo_size <= fifo_remaining);
 | |
| 
 | |
|     // DIEPTXF starts at FIFO #1.
 | |
|     // Both TXFD and TXSA are in unit of 32-bit words.
 | |
|     usb_otg->DIEPTXF[epnum - 1] = (fifo_size << USB_OTG_DIEPTXF_INEPTXFD_Pos) | _allocated_fifo_words;
 | |
| 
 | |
|     _allocated_fifo_words += fifo_size;
 | |
| 
 | |
|     //TU_LOG2_INT(fifo_size);
 | |
|     //TU_LOG2_INT(_allocated_fifo_words);
 | |
| 
 | |
|     in_ep[epnum].DIEPCTL |= (1 << USB_OTG_DIEPCTL_USBAEP_Pos) |
 | |
|                             (epnum << USB_OTG_DIEPCTL_TXFNUM_Pos) |
 | |
|                             (desc_edpt->bmAttributes.xfer << USB_OTG_DIEPCTL_EPTYP_Pos) |
 | |
|                             (desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? USB_OTG_DOEPCTL_SD0PID_SEVNFRM : 0) |
 | |
|                             (desc_edpt->wMaxPacketSize.size << USB_OTG_DIEPCTL_MPSIZ_Pos);
 | |
| 
 | |
|     dev->DAINTMSK |= (1 << (USB_OTG_DAINTMSK_IEPM_Pos + epnum));
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
 | |
| {
 | |
|   uint8_t const epnum = tu_edpt_number(ep_addr);
 | |
|   uint8_t const dir   = tu_edpt_dir(ep_addr);
 | |
| 
 | |
|   xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
 | |
|   xfer->buffer      = buffer;
 | |
|   xfer->total_len   = total_bytes;
 | |
| 
 | |
|   // EP0 can only handle one packet
 | |
|   if(epnum == 0) {
 | |
|     ep0_pending[dir] = total_bytes;
 | |
|     // Schedule the first transaction for EP0 transfer
 | |
|     edpt_schedule_packets(rhport, epnum, dir, 1, ep0_pending[dir]);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   uint16_t num_packets = (total_bytes / xfer->max_size);
 | |
|   uint8_t const short_packet_size = total_bytes % xfer->max_size;
 | |
| 
 | |
|   // Zero-size packet is special case.
 | |
|   if(short_packet_size > 0 || (total_bytes == 0)) {
 | |
|     num_packets++;
 | |
|   }
 | |
| 
 | |
|   // Schedule packets to be sent within interrupt
 | |
|   edpt_schedule_packets(rhport, epnum, dir, num_packets, total_bytes);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // TODO: The logic for STALLing and disabling an endpoint is very similar
 | |
| // (send STALL versus NAK handshakes back). Refactor into resuable function.
 | |
| void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
 | |
| {
 | |
|   USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
 | |
|   USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
 | |
|   USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
 | |
|   USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
 | |
| 
 | |
|   uint8_t const epnum = tu_edpt_number(ep_addr);
 | |
|   uint8_t const dir   = tu_edpt_dir(ep_addr);
 | |
| 
 | |
|   if(dir == TUSB_DIR_IN) {
 | |
|     // Only disable currently enabled non-control endpoint
 | |
|     if ( (epnum == 0) || !(in_ep[epnum].DIEPCTL & USB_OTG_DIEPCTL_EPENA) ){
 | |
|       in_ep[epnum].DIEPCTL |= (USB_OTG_DIEPCTL_SNAK | USB_OTG_DIEPCTL_STALL);
 | |
|     } else {
 | |
|       // Stop transmitting packets and NAK IN xfers.
 | |
|       in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_SNAK;
 | |
|       while((in_ep[epnum].DIEPINT & USB_OTG_DIEPINT_INEPNE) == 0);
 | |
| 
 | |
|       // Disable the endpoint.
 | |
|       in_ep[epnum].DIEPCTL |= (USB_OTG_DIEPCTL_STALL | USB_OTG_DIEPCTL_EPDIS);
 | |
|       while((in_ep[epnum].DIEPINT & USB_OTG_DIEPINT_EPDISD_Msk) == 0);
 | |
|       in_ep[epnum].DIEPINT = USB_OTG_DIEPINT_EPDISD;
 | |
|     }
 | |
| 
 | |
|     // Flush the FIFO, and wait until we have confirmed it cleared.
 | |
|     usb_otg->GRSTCTL |= ((epnum - 1) << USB_OTG_GRSTCTL_TXFNUM_Pos);
 | |
|     usb_otg->GRSTCTL |= USB_OTG_GRSTCTL_TXFFLSH;
 | |
|     while((usb_otg->GRSTCTL & USB_OTG_GRSTCTL_TXFFLSH_Msk) != 0);
 | |
|   } else {
 | |
|     // Only disable currently enabled non-control endpoint
 | |
|     if ( (epnum == 0) || !(out_ep[epnum].DOEPCTL & USB_OTG_DOEPCTL_EPENA) ){
 | |
|       out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_STALL;
 | |
|     } else {
 | |
|       // Asserting GONAK is required to STALL an OUT endpoint.
 | |
|       // Simpler to use polling here, we don't use the "B"OUTNAKEFF interrupt
 | |
|       // anyway, and it can't be cleared by user code. If this while loop never
 | |
|       // finishes, we have bigger problems than just the stack.
 | |
|       dev->DCTL |= USB_OTG_DCTL_SGONAK;
 | |
|       while((usb_otg->GINTSTS & USB_OTG_GINTSTS_BOUTNAKEFF_Msk) == 0);
 | |
| 
 | |
|       // Ditto here- disable the endpoint.
 | |
|       out_ep[epnum].DOEPCTL |= (USB_OTG_DOEPCTL_STALL | USB_OTG_DOEPCTL_EPDIS);
 | |
|       while((out_ep[epnum].DOEPINT & USB_OTG_DOEPINT_EPDISD_Msk) == 0);
 | |
|       out_ep[epnum].DOEPINT = USB_OTG_DOEPINT_EPDISD;
 | |
| 
 | |
|       // Allow other OUT endpoints to keep receiving.
 | |
|       dev->DCTL |= USB_OTG_DCTL_CGONAK;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
 | |
| {
 | |
|   USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
 | |
|   USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
 | |
| 
 | |
|   uint8_t const epnum = tu_edpt_number(ep_addr);
 | |
|   uint8_t const dir   = tu_edpt_dir(ep_addr);
 | |
| 
 | |
|   if(dir == TUSB_DIR_IN) {
 | |
|     in_ep[epnum].DIEPCTL &= ~USB_OTG_DIEPCTL_STALL;
 | |
| 
 | |
|     uint8_t eptype = (in_ep[epnum].DIEPCTL & USB_OTG_DIEPCTL_EPTYP_Msk) >> USB_OTG_DIEPCTL_EPTYP_Pos;
 | |
|     // Required by USB spec to reset DATA toggle bit to DATA0 on interrupt and bulk endpoints.
 | |
|     if(eptype == 2 || eptype == 3) {
 | |
|       in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_SD0PID_SEVNFRM;
 | |
|     }
 | |
|   } else {
 | |
|     out_ep[epnum].DOEPCTL &= ~USB_OTG_DOEPCTL_STALL;
 | |
| 
 | |
|     uint8_t eptype = (out_ep[epnum].DOEPCTL & USB_OTG_DOEPCTL_EPTYP_Msk) >> USB_OTG_DOEPCTL_EPTYP_Pos;
 | |
|     // Required by USB spec to reset DATA toggle bit to DATA0 on interrupt and bulk endpoints.
 | |
|     if(eptype == 2 || eptype == 3) {
 | |
|       out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_SD0PID_SEVNFRM;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*------------------------------------------------------------------*/
 | |
| 
 | |
| // Read a single data packet from receive FIFO
 | |
| static void read_fifo_packet(uint8_t rhport, uint8_t * dst, uint16_t len){
 | |
|   usb_fifo_t rx_fifo = FIFO_BASE(rhport, 0);
 | |
| 
 | |
|   // Reading full available 32 bit words from fifo
 | |
|   uint16_t full_words = len >> 2;
 | |
|   for(uint16_t i = 0; i < full_words; i++) {
 | |
|     uint32_t tmp = *rx_fifo;
 | |
|     dst[0] = tmp & 0x000000FF;
 | |
|     dst[1] = (tmp & 0x0000FF00) >> 8;
 | |
|     dst[2] = (tmp & 0x00FF0000) >> 16;
 | |
|     dst[3] = (tmp & 0xFF000000) >> 24;
 | |
|     dst += 4;
 | |
|   }
 | |
| 
 | |
|   // Read the remaining 1-3 bytes from fifo
 | |
|   uint8_t bytes_rem = len & 0x03;
 | |
|   if(bytes_rem != 0) {
 | |
|     uint32_t tmp = *rx_fifo;
 | |
|     dst[0] = tmp & 0x000000FF;
 | |
|     if(bytes_rem > 1) {
 | |
|       dst[1] = (tmp & 0x0000FF00) >> 8;
 | |
|     }
 | |
|     if(bytes_rem > 2) {
 | |
|       dst[2] = (tmp & 0x00FF0000) >> 16;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Write a single data packet to EPIN FIFO
 | |
| static void write_fifo_packet(uint8_t rhport, uint8_t fifo_num, uint8_t * src, uint16_t len){
 | |
|   usb_fifo_t tx_fifo = FIFO_BASE(rhport, fifo_num);
 | |
| 
 | |
|   // Pushing full available 32 bit words to fifo
 | |
|   uint16_t full_words = len >> 2;
 | |
|   for(uint16_t i = 0; i < full_words; i++){
 | |
|     *tx_fifo = (src[3] << 24) | (src[2] << 16) | (src[1] << 8) | src[0];
 | |
|     src += 4;
 | |
|   }
 | |
| 
 | |
|   // Write the remaining 1-3 bytes into fifo
 | |
|   uint8_t bytes_rem = len & 0x03;
 | |
|   if(bytes_rem){
 | |
|     uint32_t tmp_word = 0;
 | |
|     tmp_word |= src[0];
 | |
|     if(bytes_rem > 1){
 | |
|       tmp_word |= src[1] << 8;
 | |
|     }
 | |
|     if(bytes_rem > 2){
 | |
|       tmp_word |= src[2] << 16;
 | |
|     }
 | |
|     *tx_fifo = tmp_word;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void handle_rxflvl_ints(uint8_t rhport, USB_OTG_OUTEndpointTypeDef * out_ep) {
 | |
|   USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
 | |
|   usb_fifo_t rx_fifo = FIFO_BASE(rhport, 0);
 | |
| 
 | |
|   // Pop control word off FIFO
 | |
|   uint32_t ctl_word = usb_otg->GRXSTSP;
 | |
|   uint8_t pktsts = (ctl_word & USB_OTG_GRXSTSP_PKTSTS_Msk) >> USB_OTG_GRXSTSP_PKTSTS_Pos;
 | |
|   uint8_t epnum = (ctl_word &  USB_OTG_GRXSTSP_EPNUM_Msk) >>  USB_OTG_GRXSTSP_EPNUM_Pos;
 | |
|   uint16_t bcnt = (ctl_word & USB_OTG_GRXSTSP_BCNT_Msk) >> USB_OTG_GRXSTSP_BCNT_Pos;
 | |
| 
 | |
|   switch(pktsts) {
 | |
|     case 0x01: // Global OUT NAK (Interrupt)
 | |
|       break;
 | |
|     case 0x02: // Out packet recvd
 | |
|       {
 | |
|         xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT);
 | |
| 
 | |
|         // Read packet off RxFIFO
 | |
|         read_fifo_packet(rhport, xfer->buffer, bcnt);
 | |
| 
 | |
|         // Increment pointer to xfer data
 | |
|         xfer->buffer += bcnt;
 | |
| 
 | |
|         // Truncate transfer length in case of short packet
 | |
|         if(bcnt < xfer->max_size) {
 | |
|           xfer->total_len -= (out_ep[epnum].DOEPTSIZ & USB_OTG_DOEPTSIZ_XFRSIZ_Msk) >> USB_OTG_DOEPTSIZ_XFRSIZ_Pos;
 | |
|           if(epnum == 0) {
 | |
|             xfer->total_len -= ep0_pending[TUSB_DIR_OUT];
 | |
|             ep0_pending[TUSB_DIR_OUT] = 0;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     case 0x03: // Out packet done (Interrupt)
 | |
|       break;
 | |
|     case 0x04: // Setup packet done (Interrupt)
 | |
|       out_ep[epnum].DOEPTSIZ |= (3 << USB_OTG_DOEPTSIZ_STUPCNT_Pos);
 | |
|       break;
 | |
|     case 0x06: // Setup packet recvd
 | |
|       {
 | |
|         // We can receive up to three setup packets in succession, but
 | |
|         // only the last one is valid.
 | |
|         _setup_packet[0] = (* rx_fifo);
 | |
|         _setup_packet[1] = (* rx_fifo);
 | |
|       }
 | |
|       break;
 | |
|     default: // Invalid
 | |
|       TU_BREAKPOINT();
 | |
|       break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void handle_epout_ints(uint8_t rhport, USB_OTG_DeviceTypeDef * dev, USB_OTG_OUTEndpointTypeDef * out_ep) {
 | |
|   // DAINT for a given EP clears when DOEPINTx is cleared.
 | |
|   // OEPINT will be cleared when DAINT's out bits are cleared.
 | |
|   for(uint8_t n = 0; n < EP_MAX; n++) {
 | |
|     xfer_ctl_t * xfer = XFER_CTL_BASE(n, TUSB_DIR_OUT);
 | |
| 
 | |
|     if(dev->DAINT & (1 << (USB_OTG_DAINT_OEPINT_Pos + n))) {
 | |
|       // SETUP packet Setup Phase done.
 | |
|       if(out_ep[n].DOEPINT & USB_OTG_DOEPINT_STUP) {
 | |
|         out_ep[n].DOEPINT =  USB_OTG_DOEPINT_STUP;
 | |
|         dcd_event_setup_received(rhport, (uint8_t*) &_setup_packet[0], true);
 | |
|       }
 | |
| 
 | |
|       // OUT XFER complete
 | |
|       if(out_ep[n].DOEPINT & USB_OTG_DOEPINT_XFRC) {
 | |
|         out_ep[n].DOEPINT = USB_OTG_DOEPINT_XFRC;
 | |
| 
 | |
|         // EP0 can only handle one packet
 | |
|         if((n == 0) && ep0_pending[TUSB_DIR_OUT]) {
 | |
|           // Schedule another packet to be received.
 | |
|           edpt_schedule_packets(rhport, n, TUSB_DIR_OUT, 1, ep0_pending[TUSB_DIR_OUT]);
 | |
|         } else {
 | |
|           dcd_event_xfer_complete(rhport, n, xfer->total_len, XFER_RESULT_SUCCESS, true);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void handle_epin_ints(uint8_t rhport, USB_OTG_DeviceTypeDef * dev, USB_OTG_INEndpointTypeDef * in_ep) {
 | |
|   // DAINT for a given EP clears when DIEPINTx is cleared.
 | |
|   // IEPINT will be cleared when DAINT's out bits are cleared.
 | |
|   for ( uint8_t n = 0; n < EP_MAX; n++ )
 | |
|   {
 | |
|     xfer_ctl_t *xfer = XFER_CTL_BASE(n, TUSB_DIR_IN);
 | |
| 
 | |
|     if ( dev->DAINT & (1 << (USB_OTG_DAINT_IEPINT_Pos + n)) )
 | |
|     {
 | |
|       // IN XFER complete (entire xfer).
 | |
|       if ( in_ep[n].DIEPINT & USB_OTG_DIEPINT_XFRC )
 | |
|       {
 | |
|         in_ep[n].DIEPINT = USB_OTG_DIEPINT_XFRC;
 | |
| 
 | |
|         // EP0 can only handle one packet
 | |
|         if((n == 0) && ep0_pending[TUSB_DIR_IN]) {
 | |
|           // Schedule another packet to be transmitted.
 | |
|           edpt_schedule_packets(rhport, n, TUSB_DIR_IN, 1, ep0_pending[TUSB_DIR_IN]);
 | |
|         } else {
 | |
|           dcd_event_xfer_complete(rhport, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // XFER FIFO empty
 | |
|       if ( (in_ep[n].DIEPINT & USB_OTG_DIEPINT_TXFE) && (dev->DIEPEMPMSK & (1 << n)) )
 | |
|       {
 | |
|         // DIEPINT's TXFE bit is read-only, software cannot clear it.
 | |
|         // It will only be cleared by hardware when written bytes is more than
 | |
|         // - 64 bytes or
 | |
|         // - Half of TX FIFO size (configured by DIEPTXF)
 | |
| 
 | |
|         uint16_t remaining_packets = (in_ep[n].DIEPTSIZ & USB_OTG_DIEPTSIZ_PKTCNT_Msk) >> USB_OTG_DIEPTSIZ_PKTCNT_Pos;
 | |
| 
 | |
|         // Process every single packet (only whole packets can be written to fifo)
 | |
|         for(uint16_t i = 0; i < remaining_packets; i++){
 | |
|           uint16_t remaining_bytes = (in_ep[n].DIEPTSIZ & USB_OTG_DIEPTSIZ_XFRSIZ_Msk) >> USB_OTG_DIEPTSIZ_XFRSIZ_Pos;
 | |
|           // Packet can not be larger than ep max size
 | |
|           uint16_t packet_size = tu_min16(remaining_bytes, xfer->max_size);
 | |
| 
 | |
|           // It's only possible to write full packets into FIFO. Therefore DTXFSTS register of current
 | |
|           // EP has to be checked if the buffer can take another WHOLE packet
 | |
|           if(packet_size > ((in_ep[n].DTXFSTS & USB_OTG_DTXFSTS_INEPTFSAV_Msk) << 2)){
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           // Push packet to Tx-FIFO
 | |
|           write_fifo_packet(rhport, n, xfer->buffer, packet_size);
 | |
| 
 | |
|           // Increment pointer to xfer data
 | |
|           xfer->buffer += packet_size;
 | |
|         }
 | |
| 
 | |
|         // Turn off TXFE if all bytes are written.
 | |
|         if (((in_ep[n].DIEPTSIZ & USB_OTG_DIEPTSIZ_XFRSIZ_Msk) >> USB_OTG_DIEPTSIZ_XFRSIZ_Pos) == 0)
 | |
|         {
 | |
|           dev->DIEPEMPMSK &= ~(1 << n);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void dcd_int_handler(uint8_t rhport)
 | |
| {
 | |
|   USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
 | |
|   USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
 | |
|   USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
 | |
|   USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
 | |
| 
 | |
|   uint32_t int_status = usb_otg->GINTSTS;
 | |
| 
 | |
|   if(int_status & USB_OTG_GINTSTS_USBRST) {
 | |
|     // USBRST is start of reset.
 | |
|     usb_otg->GINTSTS = USB_OTG_GINTSTS_USBRST;
 | |
|     bus_reset(rhport);
 | |
|   }
 | |
| 
 | |
|   if(int_status & USB_OTG_GINTSTS_ENUMDNE) {
 | |
|     // ENUMDNE is the end of reset where speed of the link is detected
 | |
| 
 | |
|     usb_otg->GINTSTS = USB_OTG_GINTSTS_ENUMDNE;
 | |
| 
 | |
|     tusb_speed_t const speed = get_speed(dev);
 | |
| 
 | |
|     set_turnaround(usb_otg, speed);
 | |
|     dcd_event_bus_reset(rhport, speed, true);
 | |
|   }
 | |
| 
 | |
|   if(int_status & USB_OTG_GINTSTS_USBSUSP)
 | |
|   {
 | |
|     usb_otg->GINTSTS = USB_OTG_GINTSTS_USBSUSP;
 | |
|     dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
 | |
|   }
 | |
| 
 | |
|   if(int_status & USB_OTG_GINTSTS_WKUINT)
 | |
|   {
 | |
|     usb_otg->GINTSTS = USB_OTG_GINTSTS_WKUINT;
 | |
|     dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
 | |
|   }
 | |
| 
 | |
|   if(int_status & USB_OTG_GINTSTS_OTGINT)
 | |
|   {
 | |
|     // OTG INT bit is read-only
 | |
|     uint32_t const otg_int = usb_otg->GOTGINT;
 | |
| 
 | |
|     if (otg_int & USB_OTG_GOTGINT_SEDET)
 | |
|     {
 | |
|       dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true);
 | |
|     }
 | |
| 
 | |
|     usb_otg->GOTGINT = otg_int;
 | |
|   }
 | |
| 
 | |
| #if USE_SOF
 | |
|   if(int_status & USB_OTG_GINTSTS_SOF) {
 | |
|     usb_otg->GINTSTS = USB_OTG_GINTSTS_SOF;
 | |
|     dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // RxFIFO non-empty interrupt handling.
 | |
|   if(int_status & USB_OTG_GINTSTS_RXFLVL) {
 | |
|     // RXFLVL bit is read-only
 | |
| 
 | |
|     // Mask out RXFLVL while reading data from FIFO
 | |
|     usb_otg->GINTMSK &= ~USB_OTG_GINTMSK_RXFLVLM;
 | |
| 
 | |
|     // Loop until all available packets were handled
 | |
|     do {
 | |
|       handle_rxflvl_ints(rhport, out_ep);
 | |
|       int_status = usb_otg->GINTSTS;
 | |
|     } while(int_status & USB_OTG_GINTSTS_RXFLVL);
 | |
| 
 | |
|     usb_otg->GINTMSK |= USB_OTG_GINTMSK_RXFLVLM;
 | |
|   }
 | |
| 
 | |
|   // OUT endpoint interrupt handling.
 | |
|   if(int_status & USB_OTG_GINTSTS_OEPINT) {
 | |
|     // OEPINT is read-only
 | |
|     handle_epout_ints(rhport, dev, out_ep);
 | |
|   }
 | |
| 
 | |
|   // IN endpoint interrupt handling.
 | |
|   if(int_status & USB_OTG_GINTSTS_IEPINT) {
 | |
|     // IEPINT bit read-only
 | |
|     handle_epin_ints(rhport, dev, in_ep);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #endif
 | 
