Files
tinyUSB/src/portable/st/stm32_fsdev/dcd_stm32_fsdev.c
hathach a621c4b6fc fix more race with ch32v203 and setup when queuing zlp.
improve hil test failed output
2024-08-12 16:39:25 +07:00

976 lines
33 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Nathan Conrad
*
* Portions:
* Copyright (c) 2019 Ha Thach (tinyusb.org)
* Copyright (c) 2022 Simon Küppers (skuep)
* Copyright (c) 2022 HiFiPhile
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
/**********************************************
* This driver has been tested with the following MCUs:
* - F070, F072, L053, F042F6
*
* It also should work with minimal changes for any ST MCU with an "USB A"/"PCD"/"HCD" peripheral. This
* covers:
*
* F04x, F072, F078, F070x6/B 1024 byte buffer
* F102, F103 512 byte buffer; no internal D+ pull-up (maybe many more changes?)
* F302xB/C, F303xB/C, F373 512 byte buffer; no internal D+ pull-up
* F302x6/8, F302xD/E2, F303xD/E 1024 byte buffer; no internal D+ pull-up
* G0 2048 byte buffer; 32-bit bus; host mode
* G4 1024 byte buffer
* H5 2048 byte buffer; 32-bit bus; host mode
* L0x2, L0x3 1024 byte buffer
* L1 512 byte buffer
* L4x2, L4x3 1024 byte buffer
* L5 1024 byte buffer
* U0 1024 byte buffer; 32-bit bus
* U535, U545 2048 byte buffer; 32-bit bus; host mode
* WB35, WB55 1024 byte buffer
*
* To use this driver, you must:
* - If you are using a device with crystal-less USB, set up the clock recovery system (CRS)
* - Remap pins to be D+/D- on devices that they are shared (for example: F042Fx)
* - This is different to the normal "alternate function" GPIO interface, needs to go through SYSCFG->CFGRx register
* - Enable USB clock; Perhaps use __HAL_RCC_USB_CLK_ENABLE();
* - (Optionally configure GPIO HAL to tell it the USB driver is using the USB pins)
* - call tusb_init();
* - periodically call tusb_task();
*
* Assumptions of the driver:
* - You are not using CAN (it must share the packet buffer)
* - APB clock is >= 10 MHz
* - On some boards, series resistors are required, but not on others.
* - On some boards, D+ pull up resistor (1.5kohm) is required, but not on others.
* - You don't have long-running interrupts; some USB packets must be quickly responded to.
* - You have the ST CMSIS library linked into the project. HAL is not used.
*
* Current driver limitations (i.e., a list of features for you to add):
* - STALL handled, but not tested.
* - Does it work? No clue.
* - All EP BTABLE buffers are created based on max packet size of first EP opened with that address.
* - Packet buffer memory is copied in the interrupt.
* - This is better for performance, but means interrupts are disabled for longer
* - DMA may be the best choice, but it could also be pushed to the USBD task.
* - No double-buffering
* - No DMA
* - Minimal error handling
* - Perhaps error interrupts should be reported to the stack, or cause a device reset?
* - Assumes a single USB peripheral; I think that no hardware has multiple so this is fine.
* - Add a callback for enabling/disabling the D+ PU on devices without an internal PU.
* - F3 models use three separate interrupts. I think we could only use the LP interrupt for
* everything? However, the interrupts are configurable so the DisableInt and EnableInt
* below functions could be adjusting the wrong interrupts (if they had been reconfigured)
* - LPM is not used correctly, or at all?
*
* USB documentation and Reference implementations
* - STM32 Reference manuals
* - STM32 USB Hardware Guidelines AN4879
*
* - STM32 HAL (much of this driver is based on this)
* - libopencm3/lib/stm32/common/st_usbfs_core.c
* - Keil USB Device http://www.keil.com/pack/doc/mw/USB/html/group__usbd.html
*
* - YouTube OpenTechLab 011; https://www.youtube.com/watch?v=4FOkJLp_PUw
*
* Advantages over HAL driver:
* - Tiny (saves RAM, assumes a single USB peripheral)
*
* Notes:
* - The buffer table is allocated as endpoints are opened. The allocation is only
* cleared when the device is reset. This may be bad if the USB device needs
* to be reconfigured.
*/
#include "tusb_option.h"
#if CFG_TUD_ENABLED && defined(TUP_USBIP_FSDEV) && \
!(defined(TUP_USBIP_FSDEV_CH32) && CFG_TUD_WCH_USBIP_FSDEV == 0)
#include "device/dcd.h"
#if defined(TUP_USBIP_FSDEV_STM32)
#include "fsdev_stm32.h"
#elif defined(TUP_USBIP_FSDEV_CH32)
#include "fsdev_ch32.h"
#else
#error "Unknown USB IP"
#endif
#include "fsdev_type.h"
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
// One of these for every EP IN & OUT, uses a bit of RAM....
typedef struct {
uint8_t *buffer;
tu_fifo_t *ff;
uint16_t total_len;
uint16_t queued_len;
uint16_t max_packet_size;
uint8_t ep_idx; // index for USB_EPnR register
bool iso_in_sending; // Workaround for ISO IN EP doesn't have interrupt mask
} xfer_ctl_t;
// EP allocator
typedef struct {
uint8_t ep_num;
uint8_t ep_type;
bool allocated[2];
} ep_alloc_t;
static xfer_ctl_t xfer_status[CFG_TUD_ENDPPOINT_MAX][2];
static ep_alloc_t ep_alloc_status[FSDEV_EP_COUNT];
static uint8_t remoteWakeCountdown; // When wake is requested
//--------------------------------------------------------------------+
// Prototypes
//--------------------------------------------------------------------+
// into the stack.
static void handle_bus_reset(uint8_t rhport);
static void dcd_transmit_packet(xfer_ctl_t *xfer, uint16_t ep_ix);
static bool edpt_xfer(uint8_t rhport, uint8_t ep_num, uint8_t dir);
// PMA allocation/access
static uint16_t ep_buf_ptr; ///< Points to first free memory location
static uint32_t dcd_pma_alloc(uint16_t len, bool dbuf);
static uint8_t dcd_ep_alloc(uint8_t ep_addr, uint8_t ep_type);
static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, uint16_t nbytes);
static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, uint16_t nbytes);
static bool dcd_write_packet_memory_ff(tu_fifo_t *ff, uint16_t dst, uint16_t wNBytes);
static bool dcd_read_packet_memory_ff(tu_fifo_t *ff, uint16_t src, uint16_t wNBytes);
static void edpt0_open(uint8_t rhport);
TU_ATTR_ALWAYS_INLINE static inline void edpt0_prepare_setup(void) {
btable_set_rx_bufsize(0, BTABLE_BUF_RX, 8);
}
//--------------------------------------------------------------------+
// Inline helper
//--------------------------------------------------------------------+
TU_ATTR_ALWAYS_INLINE static inline xfer_ctl_t *xfer_ctl_ptr(uint8_t epnum, uint8_t dir) {
return &xfer_status[epnum][dir];
}
//--------------------------------------------------------------------+
// Controller API
//--------------------------------------------------------------------+
void dcd_init(uint8_t rhport) {
// Follow the RM mentions to use a special ordering of PDWN and FRES
for (volatile uint32_t i = 0; i < 200; i++) { // should be a few us
asm("NOP");
}
// Perform USB peripheral reset
FSDEV_REG->CNTR = USB_CNTR_FRES | USB_CNTR_PDWN;
for (volatile uint32_t i = 0; i < 200; i++) { // should be a few us
asm("NOP");
}
FSDEV_REG->CNTR &= ~USB_CNTR_PDWN;
// Wait startup time, for F042 and F070, this is <= 1 us.
for (volatile uint32_t i = 0; i < 200; i++) { // should be a few us
asm("NOP");
}
FSDEV_REG->CNTR = 0; // Enable USB
#if !defined(FSDEV_BUS_32BIT)
// BTABLE register does not exist any more on 32-bit bus devices
FSDEV_REG->BTABLE = FSDEV_BTABLE_BASE;
#endif
FSDEV_REG->ISTR = 0; // Clear pending interrupts
// Reset endpoints to disabled
for (uint32_t i = 0; i < FSDEV_EP_COUNT; i++) {
// This doesn't clear all bits since some bits are "toggle", but does set the type to DISABLED.
ep_write(i, 0u, false);
}
FSDEV_REG->CNTR |= USB_CNTR_RESETM | USB_CNTR_ESOFM | USB_CNTR_CTRM |
USB_CNTR_SUSPM | USB_CNTR_WKUPM | USB_CNTR_PMAOVRM;
handle_bus_reset(rhport);
// Enable pull-up if supported
dcd_connect(rhport);
}
void dcd_sof_enable(uint8_t rhport, bool en) {
(void)rhport;
if (en) {
FSDEV_REG->CNTR |= USB_CNTR_SOFM;
} else {
FSDEV_REG->CNTR &= ~USB_CNTR_SOFM;
}
}
// Receive Set Address request, mcu port must also include status IN response
void dcd_set_address(uint8_t rhport, uint8_t dev_addr) {
(void)dev_addr;
// Respond with status
dcd_edpt_xfer(rhport, TUSB_DIR_IN_MASK | 0x00, NULL, 0);
// DCD can only set address after status for this request is complete.
// do it at dcd_edpt0_status_complete()
}
void dcd_remote_wakeup(uint8_t rhport) {
(void)rhport;
FSDEV_REG->CNTR |= USB_CNTR_RESUME;
remoteWakeCountdown = 4u; // required to be 1 to 15 ms, ESOF should trigger every 1ms.
}
static void handle_bus_reset(uint8_t rhport) {
FSDEV_REG->DADDR = 0u; // disable USB Function
for (uint32_t i = 0; i < FSDEV_EP_COUNT; i++) {
// Clear EP allocation status
ep_alloc_status[i].ep_num = 0xFF;
ep_alloc_status[i].ep_type = 0xFF;
ep_alloc_status[i].allocated[0] = false;
ep_alloc_status[i].allocated[1] = false;
}
// Reset PMA allocation
ep_buf_ptr = FSDEV_BTABLE_BASE + 8 * FSDEV_EP_COUNT;
edpt0_open(rhport); // open control endpoint (both IN & OUT)
FSDEV_REG->DADDR = USB_DADDR_EF; // Enable USB Function
}
// Handle CTR interrupt for the TX/IN direction
static void handle_ctr_tx(uint32_t ep_id) {
uint32_t ep_reg = ep_read(ep_id) | USB_EP_CTR_TX | USB_EP_CTR_RX;
ep_reg &= USB_EPREG_MASK;
uint8_t const ep_num = ep_reg & USB_EPADDR_FIELD;
xfer_ctl_t *xfer = xfer_ctl_ptr(ep_num, TUSB_DIR_IN);
if (ep_is_iso(ep_reg)) {
// Ignore spurious interrupts that we don't schedule
// host can send IN token while there is no data to send, since ISO does not have NAK
// this will result to zero length packet --> trigger interrupt (which cannot be masked)
if (!xfer->iso_in_sending) {
return;
}
xfer->iso_in_sending = false;
uint8_t buf_id = (ep_reg & USB_EP_DTOG_TX) ? 0 : 1;
btable_set_count(ep_id, buf_id, 0);
}
if (xfer->total_len != xfer->queued_len) {
dcd_transmit_packet(xfer, ep_id);
} else {
dcd_event_xfer_complete(0, ep_num | TUSB_DIR_IN_MASK, xfer->queued_len, XFER_RESULT_SUCCESS, true);
}
}
static void handle_ctr_setup(uint32_t ep_id) {
uint16_t rx_count = btable_get_count(ep_id, BTABLE_BUF_RX);
uint16_t rx_addr = btable_get_addr(ep_id, BTABLE_BUF_RX);
uint8_t setup_packet[8] TU_ATTR_ALIGNED(4);
dcd_read_packet_memory(setup_packet, rx_addr, rx_count);
// Clear CTR RX if another setup packet arrived before this, it will be discarded
ep_write_clear_ctr(ep_id, TUSB_DIR_OUT);
// Setup packet should always be 8 bytes. If not, we probably missed the packet
if (rx_count == 8) {
dcd_event_setup_received(0, (uint8_t*) setup_packet, true);
// Hardware should reset EP0 RX/TX to NAK and both toggle to 1
} else {
// Missed setup packet !!!
TU_BREAKPOINT();
edpt0_prepare_setup();
}
}
// Handle CTR interrupt for the RX/OUT direction
static void handle_ctr_rx(uint32_t ep_id) {
uint32_t ep_reg = ep_read(ep_id) | USB_EP_CTR_TX | USB_EP_CTR_RX;
uint8_t const ep_num = ep_reg & USB_EPADDR_FIELD;
bool const is_iso = ep_is_iso(ep_reg);
xfer_ctl_t* xfer = xfer_ctl_ptr(ep_num, TUSB_DIR_OUT);
uint8_t buf_id;
if (is_iso) {
buf_id = (ep_reg & USB_EP_DTOG_RX) ? 0 : 1; // ISO are double buffered
} else {
buf_id = BTABLE_BUF_RX;
}
uint16_t const rx_count = btable_get_count(ep_id, buf_id);
uint16_t pma_addr = (uint16_t) btable_get_addr(ep_id, buf_id);
if (xfer->ff) {
dcd_read_packet_memory_ff(xfer->ff, pma_addr, rx_count);
} else {
dcd_read_packet_memory(xfer->buffer + xfer->queued_len, pma_addr, rx_count);
}
xfer->queued_len += rx_count;
if ((rx_count < xfer->max_packet_size) || (xfer->queued_len >= xfer->total_len)) {
// all bytes received or short packet
// For ch32v203: reset rx bufsize to mps to prevent race condition to cause PMAOVR (occurs with msc write10)
btable_set_rx_bufsize(ep_id, BTABLE_BUF_RX, xfer->max_packet_size);
dcd_event_xfer_complete(0, ep_num, xfer->queued_len, XFER_RESULT_SUCCESS, true);
// ch32 seems to unconditionally accept ZLP on EP0 OUT, which can incorrectly use queued_len of previous
// transfer. So reset total_len and queued_len to 0.
xfer->total_len = xfer->queued_len = 0;
} else {
// Set endpoint active again for receiving more data. Note that isochronous endpoints stay active always
if (!is_iso) {
uint16_t const cnt = tu_min16(xfer->total_len - xfer->queued_len, xfer->max_packet_size);
btable_set_rx_bufsize(ep_id, BTABLE_BUF_RX, cnt);
}
ep_reg &= USB_EPREG_MASK | EP_STAT_MASK(TUSB_DIR_OUT); // will change RX Status, reserved other toggle bits
ep_change_status(&ep_reg, TUSB_DIR_OUT, EP_STAT_VALID);
ep_write(ep_id, ep_reg, false);
}
}
void dcd_int_handler(uint8_t rhport) {
uint32_t int_status = FSDEV_REG->ISTR;
/* Put SOF flag at the beginning of ISR in case to get least amount of jitter if it is used for timing purposes */
if (int_status & USB_ISTR_SOF) {
FSDEV_REG->ISTR = (fsdev_bus_t)~USB_ISTR_SOF;
dcd_event_sof(0, FSDEV_REG->FNR & USB_FNR_FN, true);
}
if (int_status & USB_ISTR_RESET) {
// USBRST is start of reset.
FSDEV_REG->ISTR = (fsdev_bus_t)~USB_ISTR_RESET;
handle_bus_reset(rhport);
dcd_event_bus_reset(0, TUSB_SPEED_FULL, true);
return; // Don't do the rest of the things here; perhaps they've been cleared?
}
if (int_status & USB_ISTR_WKUP) {
FSDEV_REG->CNTR &= ~USB_CNTR_LPMODE;
FSDEV_REG->CNTR &= ~USB_CNTR_FSUSP;
FSDEV_REG->ISTR = (fsdev_bus_t)~USB_ISTR_WKUP;
dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
}
if (int_status & USB_ISTR_SUSP) {
/* Suspend is asserted for both suspend and unplug events. without Vbus monitoring,
* these events cannot be differentiated, so we only trigger suspend. */
/* Force low-power mode in the macrocell */
FSDEV_REG->CNTR |= USB_CNTR_FSUSP;
FSDEV_REG->CNTR |= USB_CNTR_LPMODE;
/* clear of the ISTR bit must be done after setting of CNTR_FSUSP */
FSDEV_REG->ISTR = (fsdev_bus_t)~USB_ISTR_SUSP;
dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
}
if (int_status & USB_ISTR_ESOF) {
if (remoteWakeCountdown == 1u) {
FSDEV_REG->CNTR &= ~USB_CNTR_RESUME;
}
if (remoteWakeCountdown > 0u) {
remoteWakeCountdown--;
}
FSDEV_REG->ISTR = (fsdev_bus_t)~USB_ISTR_ESOF;
}
// loop to handle all pending CTR interrupts
while (FSDEV_REG->ISTR & USB_ISTR_CTR) {
// skip DIR bit, and use CTR TX/RX instead, since there is chance we have both TX/RX completed in one interrupt
uint32_t const ep_id = FSDEV_REG->ISTR & USB_ISTR_EP_ID;
uint32_t const ep_reg = ep_read(ep_id);
if (ep_reg & USB_EP_CTR_RX) {
#ifdef FSDEV_BUS_32BIT
/* https://www.st.com/resource/en/errata_sheet/es0561-stm32h503cbebkbrb-device-errata-stmicroelectronics.pdf
* https://www.st.com/resource/en/errata_sheet/es0587-stm32u535xx-and-stm32u545xx-device-errata-stmicroelectronics.pdf
* From H503/U535 errata: Buffer description table update completes after CTR interrupt triggers
* Description:
* - During OUT transfers, the correct transfer interrupt (CTR) is triggered a little before the last USB SRAM accesses
* have completed. If the software responds quickly to the interrupt, the full buffer contents may not be correct.
* Workaround:
* - Software should ensure that a small delay is included before accessing the SRAM contents. This delay
* should be 800 ns in Full Speed mode and 6.4 μs in Low Speed mode
* - Since H5 can run up to 250Mhz -> 1 cycle = 4ns. Per errata, we need to wait 200 cycles. Though executing code
* also takes time, so we'll wait 60 cycles (count = 20).
* - Since Low Speed mode is not supported/popular, we will ignore it for now.
*
* Note: this errata may also apply to G0, U5, H5 etc.
*/
volatile uint32_t cycle_count = 20; // defined as PCD_RX_PMA_CNT in stm32 hal_driver
while (cycle_count > 0U) {
cycle_count--; // each count take 3 cycles (1 for sub, jump, and compare)
}
#endif
if (ep_reg & USB_EP_SETUP) {
handle_ctr_setup(ep_id); // CTR will be clear after copied setup packet
} else {
ep_write_clear_ctr(ep_id, TUSB_DIR_OUT);
handle_ctr_rx(ep_id);
}
}
if (ep_reg & USB_EP_CTR_TX) {
ep_write_clear_ctr(ep_id, TUSB_DIR_IN);
handle_ctr_tx(ep_id);
}
}
if (int_status & USB_ISTR_PMAOVR) {
TU_BREAKPOINT();
FSDEV_REG->ISTR = (fsdev_bus_t)~USB_ISTR_PMAOVR;
}
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
// Invoked when a control transfer's status stage is complete.
// May help DCD to prepare for next control transfer, this API is optional.
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const *request) {
(void)rhport;
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS) {
uint8_t const dev_addr = (uint8_t)request->wValue;
FSDEV_REG->DADDR = (USB_DADDR_EF | dev_addr);
}
edpt0_prepare_setup();
}
/***
* Allocate a section of PMA
* In case of double buffering, high 16bit is the address of 2nd buffer
* During failure, TU_ASSERT is used. If this happens, rework/reallocate memory manually.
*/
static uint32_t dcd_pma_alloc(uint16_t len, bool dbuf)
{
uint8_t blsize, num_block;
uint16_t aligned_len = pma_align_buffer_size(len, &blsize, &num_block);
(void) blsize;
(void) num_block;
uint32_t addr = ep_buf_ptr;
ep_buf_ptr = (uint16_t)(ep_buf_ptr + aligned_len); // increment buffer pointer
if (dbuf) {
addr |= ((uint32_t)ep_buf_ptr) << 16;
ep_buf_ptr = (uint16_t)(ep_buf_ptr + aligned_len); // increment buffer pointer
}
// Verify packet buffer is not overflowed
TU_ASSERT(ep_buf_ptr <= FSDEV_PMA_SIZE, 0xFFFF);
return addr;
}
/***
* Allocate hardware endpoint
*/
static uint8_t dcd_ep_alloc(uint8_t ep_addr, uint8_t ep_type)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
for (uint8_t i = 0; i < FSDEV_EP_COUNT; i++) {
// Check if already allocated
if (ep_alloc_status[i].allocated[dir] &&
ep_alloc_status[i].ep_type == ep_type &&
ep_alloc_status[i].ep_num == epnum) {
return i;
}
// If EP of current direction is not allocated
// Except for ISO endpoint, both direction should be free
if (!ep_alloc_status[i].allocated[dir] &&
(ep_type != TUSB_XFER_ISOCHRONOUS || !ep_alloc_status[i].allocated[dir ^ 1])) {
// Check if EP number is the same
if (ep_alloc_status[i].ep_num == 0xFF || ep_alloc_status[i].ep_num == epnum) {
// One EP pair has to be the same type
if (ep_alloc_status[i].ep_type == 0xFF || ep_alloc_status[i].ep_type == ep_type) {
ep_alloc_status[i].ep_num = epnum;
ep_alloc_status[i].ep_type = ep_type;
ep_alloc_status[i].allocated[dir] = true;
return i;
}
}
}
}
// Allocation failed
TU_ASSERT(0);
}
void edpt0_open(uint8_t rhport) {
(void) rhport;
dcd_ep_alloc(0x0, TUSB_XFER_CONTROL);
dcd_ep_alloc(0x80, TUSB_XFER_CONTROL);
xfer_status[0][0].max_packet_size = CFG_TUD_ENDPOINT0_SIZE;
xfer_status[0][0].ep_idx = 0;
xfer_status[0][1].max_packet_size = CFG_TUD_ENDPOINT0_SIZE;
xfer_status[0][1].ep_idx = 0;
uint16_t pma_addr0 = dcd_pma_alloc(CFG_TUD_ENDPOINT0_SIZE, false);
uint16_t pma_addr1 = dcd_pma_alloc(CFG_TUD_ENDPOINT0_SIZE, false);
btable_set_addr(0, BTABLE_BUF_RX, pma_addr0);
btable_set_addr(0, BTABLE_BUF_TX, pma_addr1);
uint32_t ep_reg = ep_read(0) & ~USB_EPREG_MASK; // only get toggle bits
ep_reg |= USB_EP_CONTROL;
ep_change_status(&ep_reg, TUSB_DIR_IN, EP_STAT_NAK);
ep_change_status(&ep_reg, TUSB_DIR_OUT, EP_STAT_NAK);
// no need to explicitly set DTOG bits since we aren't masked DTOG bit
edpt0_prepare_setup(); // prepare for setup packet
ep_write(0, ep_reg, false);
}
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const *desc_ep) {
(void)rhport;
uint8_t const ep_addr = desc_ep->bEndpointAddress;
uint8_t const ep_num = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
const uint16_t packet_size = tu_edpt_packet_size(desc_ep);
uint8_t const ep_idx = dcd_ep_alloc(ep_addr, desc_ep->bmAttributes.xfer);
TU_ASSERT(ep_idx < FSDEV_EP_COUNT);
uint32_t ep_reg = ep_read(ep_idx) & ~USB_EPREG_MASK;
ep_reg |= tu_edpt_number(ep_addr) | USB_EP_CTR_TX | USB_EP_CTR_RX;
// Set type
switch (desc_ep->bmAttributes.xfer) {
case TUSB_XFER_BULK:
ep_reg |= USB_EP_BULK;
break;
case TUSB_XFER_INTERRUPT:
ep_reg |= USB_EP_INTERRUPT;
break;
default:
// Note: ISO endpoint should use alloc / active functions
TU_ASSERT(false);
}
/* Create a packet memory buffer area. */
uint16_t pma_addr = dcd_pma_alloc(packet_size, false);
btable_set_addr(ep_idx, dir == TUSB_DIR_IN ? BTABLE_BUF_TX : BTABLE_BUF_RX, pma_addr);
xfer_ctl_t *xfer = xfer_ctl_ptr(ep_num, dir);
xfer->max_packet_size = packet_size;
xfer->ep_idx = ep_idx;
ep_change_status(&ep_reg, dir, EP_STAT_NAK);
ep_change_dtog(&ep_reg, dir, 0);
// reserve other direction toggle bits
if (dir == TUSB_DIR_IN) {
ep_reg &= ~(USB_EPRX_STAT | USB_EP_DTOG_RX);
} else {
ep_reg &= ~(USB_EPTX_STAT | USB_EP_DTOG_TX);
}
ep_write(ep_idx, ep_reg, true);
return true;
}
void dcd_edpt_close_all(uint8_t rhport) {
dcd_int_disable(rhport);
for (uint32_t i = 1; i < FSDEV_EP_COUNT; i++) {
// Reset endpoint
ep_write(i, 0, false);
// Clear EP allocation status
ep_alloc_status[i].ep_num = 0xFF;
ep_alloc_status[i].ep_type = 0xFF;
ep_alloc_status[i].allocated[0] = false;
ep_alloc_status[i].allocated[1] = false;
}
dcd_int_enable(rhport);
// Reset PMA allocation
ep_buf_ptr = FSDEV_BTABLE_BASE + 8 * CFG_TUD_ENDPPOINT_MAX + 2 * CFG_TUD_ENDPOINT0_SIZE;
}
bool dcd_edpt_iso_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t largest_packet_size) {
(void)rhport;
uint8_t const ep_num = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
uint8_t const ep_idx = dcd_ep_alloc(ep_addr, TUSB_XFER_ISOCHRONOUS);
/* Create a packet memory buffer area. Enable double buffering for devices with 2048 bytes PMA,
for smaller devices double buffering occupy too much space. */
uint32_t pma_addr = dcd_pma_alloc(largest_packet_size, true);
#if FSDEV_PMA_SIZE > 1024u
uint16_t pma_addr2 = pma_addr >> 16;
#else
uint16_t pma_addr2 = pma_addr;
#endif
btable_set_addr(ep_idx, 0, pma_addr);
btable_set_addr(ep_idx, 1, pma_addr2);
xfer_ctl_t* xfer = xfer_ctl_ptr(ep_num, dir);
xfer->ep_idx = ep_idx;
return true;
}
bool dcd_edpt_iso_activate(uint8_t rhport, tusb_desc_endpoint_t const *desc_ep) {
(void)rhport;
uint8_t const ep_addr = desc_ep->bEndpointAddress;
uint8_t const ep_num = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t* xfer = xfer_ctl_ptr(ep_num, dir);
uint8_t const ep_idx = xfer->ep_idx;
xfer->max_packet_size = tu_edpt_packet_size(desc_ep);
uint32_t ep_reg = ep_read(ep_idx) & ~USB_EPREG_MASK;
ep_reg |= tu_edpt_number(ep_addr) | USB_EP_ISOCHRONOUS | USB_EP_CTR_TX | USB_EP_CTR_RX;
ep_change_status(&ep_reg, TUSB_DIR_IN, EP_STAT_DISABLED);
ep_change_status(&ep_reg, TUSB_DIR_OUT, EP_STAT_DISABLED);
ep_change_dtog(&ep_reg, dir, 0);
ep_change_dtog(&ep_reg, 1 - dir, 1);
ep_write(ep_idx, ep_reg, true);
return true;
}
// Currently, single-buffered, and only 64 bytes at a time (max)
static void dcd_transmit_packet(xfer_ctl_t *xfer, uint16_t ep_ix) {
uint16_t len = tu_min16(xfer->total_len - xfer->queued_len, xfer->max_packet_size);
uint32_t ep_reg = ep_read(ep_ix) | USB_EP_CTR_TX | USB_EP_CTR_RX; // reserve CTR
ep_reg &= USB_EPREG_MASK | EP_STAT_MASK(TUSB_DIR_IN); // only change TX Status, reserve other toggle bits
bool const is_iso = ep_is_iso(ep_reg);
uint8_t buf_id;
if (is_iso) {
buf_id = (ep_reg & USB_EP_DTOG_TX) ? 1 : 0;
} else {
buf_id = BTABLE_BUF_TX;
}
uint16_t addr_ptr = (uint16_t) btable_get_addr(ep_ix, buf_id);
if (xfer->ff) {
dcd_write_packet_memory_ff(xfer->ff, addr_ptr, len);
} else {
dcd_write_packet_memory(addr_ptr, &(xfer->buffer[xfer->queued_len]), len);
}
xfer->queued_len += len;
btable_set_count(ep_ix, buf_id, len);
ep_change_status(&ep_reg, TUSB_DIR_IN, EP_STAT_VALID);
if (is_iso) {
xfer->iso_in_sending = true;
}
ep_write(ep_ix, ep_reg, true);
}
static bool edpt_xfer(uint8_t rhport, uint8_t ep_num, uint8_t dir) {
(void) rhport;
xfer_ctl_t *xfer = xfer_ctl_ptr(ep_num, dir);
uint8_t const ep_idx = xfer->ep_idx;
if (dir == TUSB_DIR_IN) {
dcd_transmit_packet(xfer, ep_idx);
} else {
uint32_t ep_reg = ep_read(ep_idx) | USB_EP_CTR_TX | USB_EP_CTR_RX; // reserve CTR
ep_reg &= USB_EPREG_MASK | EP_STAT_MASK(dir);
uint16_t cnt = tu_min16(xfer->total_len, xfer->max_packet_size);
if (ep_is_iso(ep_reg)) {
btable_set_rx_bufsize(ep_idx, 0, cnt);
btable_set_rx_bufsize(ep_idx, 1, cnt);
} else {
btable_set_rx_bufsize(ep_idx, BTABLE_BUF_RX, cnt);
}
ep_change_status(&ep_reg, dir, EP_STAT_VALID);
ep_write(ep_idx, ep_reg, true);
}
return true;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes) {
uint8_t const ep_num = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t *xfer = xfer_ctl_ptr(ep_num, dir);
xfer->buffer = buffer;
xfer->ff = NULL;
xfer->total_len = total_bytes;
xfer->queued_len = 0;
return edpt_xfer(rhport, ep_num, dir);
}
bool dcd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t *ff, uint16_t total_bytes) {
uint8_t const ep_num = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t *xfer = xfer_ctl_ptr(ep_num, dir);
xfer->buffer = NULL;
xfer->ff = ff;
xfer->total_len = total_bytes;
xfer->queued_len = 0;
return edpt_xfer(rhport, ep_num, dir);
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) {
(void)rhport;
uint8_t const ep_num = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t *xfer = xfer_ctl_ptr(ep_num, dir);
uint8_t const ep_idx = xfer->ep_idx;
uint32_t ep_reg = ep_read(ep_idx) | USB_EP_CTR_TX | USB_EP_CTR_RX; // reserve CTR bits
ep_reg &= USB_EPREG_MASK | EP_STAT_MASK(dir);
ep_change_status(&ep_reg, dir, EP_STAT_STALL);
ep_write(ep_idx, ep_reg, true);
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) {
(void)rhport;
uint8_t const ep_num = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t *xfer = xfer_ctl_ptr(ep_num, dir);
uint8_t const ep_idx = xfer->ep_idx;
uint32_t ep_reg = ep_read(ep_idx) | USB_EP_CTR_TX | USB_EP_CTR_RX; // reserve CTR bits
ep_reg &= USB_EPREG_MASK | EP_STAT_MASK(dir) | EP_DTOG_MASK(dir);
if (!ep_is_iso(ep_reg)) {
ep_change_status(&ep_reg, dir, EP_STAT_NAK);
}
ep_change_dtog(&ep_reg, dir, 0); // Reset to DATA0
ep_write(ep_idx, ep_reg, true);
}
//--------------------------------------------------------------------+
// PMA read/write
//--------------------------------------------------------------------+
// Write to packet memory area (PMA) from user memory
// - Packet memory must be either strictly 16-bit or 32-bit depending on FSDEV_BUS_32BIT
// - Uses unaligned for RAM (since M0 cannot access unaligned address)
static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, uint16_t nbytes) {
if (nbytes == 0) return true;
uint32_t n_write = nbytes / FSDEV_BUS_SIZE;
fsdev_pma_buf_t* pma_buf = PMA_BUF_AT(dst);
const uint8_t *src8 = src;
while (n_write--) {
pma_buf->value = fsdevbus_unaligned_read(src8);
src8 += FSDEV_BUS_SIZE;
pma_buf++;
}
// odd bytes e.g 1 for 16-bit or 1-3 for 32-bit
uint16_t odd = nbytes & (FSDEV_BUS_SIZE - 1);
if (odd) {
fsdev_bus_t temp = 0;
for(uint16_t i = 0; i < odd; i++) {
temp |= *src8++ << (i * 8);
}
pma_buf->value = temp;
}
return true;
}
// Read from packet memory area (PMA) to user memory.
// - Packet memory must be either strictly 16-bit or 32-bit depending on FSDEV_BUS_32BIT
// - Uses unaligned for RAM (since M0 cannot access unaligned address)
static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, uint16_t nbytes) {
if (nbytes == 0) return true;
uint32_t n_read = nbytes / FSDEV_BUS_SIZE;
fsdev_pma_buf_t* pma_buf = PMA_BUF_AT(src);
uint8_t *dst8 = (uint8_t *)dst;
while (n_read--) {
fsdevbus_unaligned_write(dst8, (fsdev_bus_t ) pma_buf->value);
dst8 += FSDEV_BUS_SIZE;
pma_buf++;
}
// odd bytes e.g 1 for 16-bit or 1-3 for 32-bit
uint16_t odd = nbytes & (FSDEV_BUS_SIZE - 1);
if (odd) {
fsdev_bus_t temp = pma_buf->value;
while (odd--) {
*dst8++ = (uint8_t) (temp & 0xfful);
temp >>= 8;
}
}
return true;
}
// Write to PMA from FIFO
static bool dcd_write_packet_memory_ff(tu_fifo_t *ff, uint16_t dst, uint16_t wNBytes) {
if (wNBytes == 0) return true;
// Since we copy from a ring buffer FIFO, a wrap might occur making it necessary to conduct two copies
tu_fifo_buffer_info_t info;
tu_fifo_get_read_info(ff, &info);
uint16_t cnt_lin = tu_min16(wNBytes, info.len_lin);
uint16_t cnt_wrap = tu_min16(wNBytes - cnt_lin, info.len_wrap);
uint16_t const cnt_total = cnt_lin + cnt_wrap;
// We want to read from the FIFO and write it into the PMA, if LIN part is ODD and has WRAPPED part,
// last lin byte will be combined with wrapped part To ensure PMA is always access aligned
uint16_t lin_even = cnt_lin & ~(FSDEV_BUS_SIZE - 1);
uint16_t lin_odd = cnt_lin & (FSDEV_BUS_SIZE - 1);
uint8_t const *src8 = (uint8_t const*) info.ptr_lin;
// write even linear part
dcd_write_packet_memory(dst, src8, lin_even);
dst += lin_even;
src8 += lin_even;
if (lin_odd == 0) {
src8 = (uint8_t const*) info.ptr_wrap;
} else {
// Combine last linear bytes + first wrapped bytes to form fsdev bus width data
fsdev_bus_t temp = 0;
uint16_t i;
for(i = 0; i < lin_odd; i++) {
temp |= *src8++ << (i * 8);
}
src8 = (uint8_t const*) info.ptr_wrap;
for(; i < FSDEV_BUS_SIZE && cnt_wrap > 0; i++, cnt_wrap--) {
temp |= *src8++ << (i * 8);
}
dcd_write_packet_memory(dst, &temp, FSDEV_BUS_SIZE);
dst += FSDEV_BUS_SIZE;
}
// write the rest of the wrapped part
dcd_write_packet_memory(dst, src8, cnt_wrap);
tu_fifo_advance_read_pointer(ff, cnt_total);
return true;
}
// Read from PMA to FIFO
static bool dcd_read_packet_memory_ff(tu_fifo_t *ff, uint16_t src, uint16_t wNBytes) {
if (wNBytes == 0) return true;
// Since we copy into a ring buffer FIFO, a wrap might occur making it necessary to conduct two copies
// Check for first linear part
tu_fifo_buffer_info_t info;
tu_fifo_get_write_info(ff, &info); // We want to read from the FIFO
uint16_t cnt_lin = tu_min16(wNBytes, info.len_lin);
uint16_t cnt_wrap = tu_min16(wNBytes - cnt_lin, info.len_wrap);
uint16_t cnt_total = cnt_lin + cnt_wrap;
// We want to read from the FIFO and write it into the PMA, if LIN part is ODD and has WRAPPED part,
// last lin byte will be combined with wrapped part To ensure PMA is always access aligned
uint16_t lin_even = cnt_lin & ~(FSDEV_BUS_SIZE - 1);
uint16_t lin_odd = cnt_lin & (FSDEV_BUS_SIZE - 1);
uint8_t *dst8 = (uint8_t *) info.ptr_lin;
// read even linear part
dcd_read_packet_memory(dst8, src, lin_even);
dst8 += lin_even;
src += lin_even;
if (lin_odd == 0) {
dst8 = (uint8_t *) info.ptr_wrap;
} else {
// Combine last linear bytes + first wrapped bytes to form fsdev bus width data
fsdev_bus_t temp;
dcd_read_packet_memory(&temp, src, FSDEV_BUS_SIZE);
src += FSDEV_BUS_SIZE;
uint16_t i;
for (i = 0; i < lin_odd; i++) {
*dst8++ = (uint8_t) (temp & 0xfful);
temp >>= 8;
}
dst8 = (uint8_t *) info.ptr_wrap;
for (; i < FSDEV_BUS_SIZE && cnt_wrap > 0; i++, cnt_wrap--) {
*dst8++ = (uint8_t) (temp & 0xfful);
temp >>= 8;
}
}
// read the rest of the wrapped part
dcd_read_packet_memory(dst8, src, cnt_wrap);
tu_fifo_advance_write_pointer(ff, cnt_total);
return true;
}
#endif