Files
tinyUSB/src/class/midi/midi_host.c
2025-02-13 15:54:31 +07:00

768 lines
29 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if (TUSB_OPT_HOST_ENABLED && CFG_TUH_MIDI)
#include "host/usbh.h"
#include "host/usbh_pvt.h"
#include "midi_host.h"
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
// TODO: refactor to share code with the MIDI Device driver
typedef struct
{
uint8_t buffer[4];
uint8_t index;
uint8_t total;
}midi_stream_t;
typedef struct {
uint8_t dev_addr;
uint8_t itf_num;
uint8_t ep_in; // IN endpoint address
uint8_t ep_out; // OUT endpoint address
uint8_t num_cables_rx; // IN endpoint CS descriptor bNumEmbMIDIJack value
uint8_t num_cables_tx; // OUT endpoint CS descriptor bNumEmbMIDIJack value
// For Stream read()/write() API
// Messages are always 4 bytes long, queue them for reading and writing so the
// callers can use the Stream interface with single-byte read/write calls.
midi_stream_t stream_write;
midi_stream_t stream_read;
/*------------- From this point, data is not cleared by bus reset -------------*/
// Endpoint stream
struct {
tu_edpt_stream_t tx;
tu_edpt_stream_t rx;
uint8_t rx_ff_buf[CFG_TUH_MIDI_RX_BUFSIZE];
uint8_t tx_ff_buf[CFG_TUH_MIDI_TX_BUFSIZE];
} ep_stream;
bool configured;
#if CFG_MIDI_HOST_DEVSTRINGS
#define MAX_STRING_INDICES 32
uint8_t all_string_indices[MAX_STRING_INDICES];
uint8_t num_string_indices;
#define MAX_IN_JACKS 8
#define MAX_OUT_JACKS 8
struct {
uint8_t jack_id;
uint8_t jack_type;
uint8_t string_index;
} in_jack_info[MAX_IN_JACKS];
uint8_t next_in_jack;
struct {
uint8_t jack_id;
uint8_t jack_type;
uint8_t num_source_ids;
uint8_t source_ids[MAX_IN_JACKS/4];
uint8_t string_index;
} out_jack_info[MAX_OUT_JACKS];
uint8_t next_out_jack;
uint8_t ep_in_associated_jacks[MAX_OUT_JACKS/2];
uint8_t ep_out_associated_jacks[MAX_IN_JACKS/2];
#endif
}midih_interface_t;
typedef struct {
TUH_EPBUF_DEF(tx, TUH_EPSIZE_BULK_MPS);
TUH_EPBUF_DEF(rx, TUH_EPSIZE_BULK_MPS);
} midih_epbuf_t;
static midih_interface_t _midi_host[CFG_TUH_MIDI];
CFG_TUH_MEM_SECTION static midih_epbuf_t _midi_epbuf[CFG_TUH_MIDI];
//--------------------------------------------------------------------+
// Helper
//--------------------------------------------------------------------+
TU_ATTR_ALWAYS_INLINE static inline midih_interface_t* find_midi_by_daddr(uint8_t dev_addr) {
for (uint8_t i = 0; i < CFG_TUH_MIDI; i++) {
if (_midi_host[i].dev_addr == dev_addr) {
return &_midi_host[i];
}
}
return NULL;
}
TU_ATTR_ALWAYS_INLINE static inline midih_interface_t* find_new_midi(void) {
return find_midi_by_daddr(0);
}
//--------------------------------------------------------------------+
// USBH API
//--------------------------------------------------------------------+
bool midih_init(void) {
tu_memclr(&_midi_host, sizeof(_midi_host));
for (int inst = 0; inst < CFG_TUH_MIDI; inst++) {
midih_interface_t *p_midi_host = &_midi_host[inst];
tu_edpt_stream_init(&p_midi_host->ep_stream.rx, true, false, false,
p_midi_host->ep_stream.rx_ff_buf, CFG_TUH_MIDI_RX_BUFSIZE, _midi_epbuf->rx, TUH_EPSIZE_BULK_MPS);
tu_edpt_stream_init(&p_midi_host->ep_stream.tx, true, true, false,
p_midi_host->ep_stream.tx_ff_buf, CFG_TUH_MIDI_TX_BUFSIZE, _midi_epbuf->tx, TUH_EPSIZE_BULK_MPS);
}
return true;
}
bool midih_deinit(void) {
for (size_t i = 0; i < CFG_TUH_MIDI; i++) {
midih_interface_t* p_midi = &_midi_host[i];
tu_edpt_stream_deinit(&p_midi->ep_stream.rx);
tu_edpt_stream_deinit(&p_midi->ep_stream.tx);
}
return true;
}
void midih_close(uint8_t dev_addr) {
midih_interface_t *p_midi_host = find_midi_by_daddr(dev_addr);
if (p_midi_host == NULL) {
return;
}
if (tuh_midi_umount_cb) {
tuh_midi_umount_cb(dev_addr, 0);
}
p_midi_host->ep_in = 0;
p_midi_host->ep_out = 0;
p_midi_host->itf_num = 0;
p_midi_host->num_cables_rx = 0;
p_midi_host->num_cables_tx = 0;
p_midi_host->dev_addr = 0;
p_midi_host->configured = false;
tu_memclr(&p_midi_host->stream_read, sizeof(p_midi_host->stream_read));
tu_memclr(&p_midi_host->stream_write, sizeof(p_midi_host->stream_write));
tu_edpt_stream_close(&p_midi_host->ep_stream.rx);
tu_edpt_stream_close(&p_midi_host->ep_stream.tx);
}
bool midih_xfer_cb(uint8_t dev_addr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes) {
(void) result;
midih_interface_t *p_midi_host = find_midi_by_daddr(dev_addr);
TU_VERIFY(p_midi_host != NULL);
if (ep_addr == p_midi_host->ep_stream.rx.ep_addr) {
// receive new data if available
if (xferred_bytes) {
// put in the RX FIFO only non-zero MIDI IN 4-byte packets
uint32_t packets_queued = 0;
uint8_t *buf = _midi_epbuf->rx;
const uint32_t npackets = xferred_bytes / 4;
for (uint32_t p = 0; p < npackets; p++) {
// some devices send back all zero packets even if there is no data ready
const uint32_t packet = tu_unaligned_read32(buf);
if (packet != 0) {
tu_edpt_stream_read_xfer_complete_with_buf(&p_midi_host->ep_stream.rx, buf, 4);
++packets_queued;
TU_LOG3("MIDI RX=%08x\r\n", packet);
}
buf += 4;
}
if (tuh_midi_rx_cb) {
tuh_midi_rx_cb(dev_addr, packets_queued); // invoke receive callback
}
}
// prepare for next transfer if needed
tu_edpt_stream_read_xfer(dev_addr, &p_midi_host->ep_stream.rx);
} else if (ep_addr == p_midi_host->ep_stream.tx.ep_addr) {
if (tuh_midi_tx_cb) {
tuh_midi_tx_cb(dev_addr);
}
if (0 == tu_edpt_stream_write_xfer(dev_addr, &p_midi_host->ep_stream.tx)) {
// If there is no data left, a ZLP should be sent if
// xferred_bytes is multiple of EP size and not zero
tu_edpt_stream_write_zlp_if_needed(dev_addr, &p_midi_host->ep_stream.tx, xferred_bytes);
}
}
return true;
}
//--------------------------------------------------------------------+
// Enumeration
//--------------------------------------------------------------------+
bool midih_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_interface_t const *desc_itf, uint16_t max_len) {
(void) rhport;
midih_interface_t *p_midi_host = find_new_midi();
TU_VERIFY(p_midi_host != NULL);
p_midi_host->num_string_indices = 0;
TU_VERIFY(TUSB_CLASS_AUDIO == desc_itf->bInterfaceClass);
// There can be just a MIDI interface or an audio and a MIDI interface. Only open the MIDI interface
uint8_t const *p_desc = (uint8_t const *) desc_itf;
uint16_t len_parsed = 0;
if (AUDIO_SUBCLASS_CONTROL == desc_itf->bInterfaceSubClass) {
// Keep track of any string descriptor that might be here
if (desc_itf->iInterface != 0) {
p_midi_host->all_string_indices[p_midi_host->num_string_indices++] = desc_itf->iInterface;
}
// This driver does not support audio streaming. However, if this is the audio control interface
// there might be a MIDI interface following it. Search through every descriptor until a MIDI
// interface is found or the end of the descriptor is found
while (len_parsed < max_len &&
(desc_itf->bInterfaceClass != TUSB_CLASS_AUDIO || desc_itf->bInterfaceSubClass != AUDIO_SUBCLASS_MIDI_STREAMING)) {
len_parsed += desc_itf->bLength;
p_desc = tu_desc_next(p_desc);
desc_itf = (tusb_desc_interface_t const *)p_desc;
}
TU_VERIFY(TUSB_CLASS_AUDIO == desc_itf->bInterfaceClass);
}
TU_VERIFY(AUDIO_SUBCLASS_MIDI_STREAMING == desc_itf->bInterfaceSubClass);
len_parsed += desc_itf->bLength;
// Keep track of any string descriptor that might be here
if (desc_itf->iInterface != 0) {
p_midi_host->all_string_indices[p_midi_host->num_string_indices++] = desc_itf->iInterface;
}
p_desc = tu_desc_next(p_desc);
TU_LOG1("MIDI opening Interface %u (addr = %u)\r\n", desc_itf->bInterfaceNumber, dev_addr);
// Find out if getting the MIDI class specific interface header or an endpoint descriptor
// or a class-specific endpoint descriptor
// Jack descriptors or element descriptors must follow the cs interface header,
// but this driver does not support devices that contain element descriptors
// assume it is an interface header
midi_desc_header_t const *p_mdh = (midi_desc_header_t const *)p_desc;
TU_VERIFY((p_mdh->bDescriptorType == TUSB_DESC_CS_INTERFACE && p_mdh->bDescriptorSubType == MIDI_CS_INTERFACE_HEADER) ||
(p_mdh->bDescriptorType == TUSB_DESC_CS_ENDPOINT && p_mdh->bDescriptorSubType == MIDI_CS_ENDPOINT_GENERAL) ||
p_mdh->bDescriptorType == TUSB_DESC_ENDPOINT);
uint8_t prev_ep_addr = 0; // the CS endpoint descriptor is associated with the previous endpoint descriptor
p_midi_host->itf_num = desc_itf->bInterfaceNumber;
tusb_desc_endpoint_t const* in_desc = NULL;
tusb_desc_endpoint_t const* out_desc = NULL;
while (len_parsed < max_len) {
TU_VERIFY((p_mdh->bDescriptorType == TUSB_DESC_CS_INTERFACE) ||
(p_mdh->bDescriptorType == TUSB_DESC_CS_ENDPOINT && p_mdh->bDescriptorSubType == MIDI_CS_ENDPOINT_GENERAL) ||
p_mdh->bDescriptorType == TUSB_DESC_ENDPOINT);
if (p_mdh->bDescriptorType == TUSB_DESC_CS_INTERFACE) {
// The USB host doesn't really need this information unless it uses
// the string descriptor for a jack or Element
// assume it is an input jack
midi_desc_in_jack_t const *p_mdij = (midi_desc_in_jack_t const *) p_desc;
if (p_mdij->bDescriptorSubType == MIDI_CS_INTERFACE_HEADER) {
TU_LOG2("Found MIDI Interface Header\r\b");
} else if (p_mdij->bDescriptorSubType == MIDI_CS_INTERFACE_IN_JACK) {
// Then it is an in jack.
TU_LOG2("Found in jack\r\n");
#if CFG_MIDI_HOST_DEVSTRINGS
if (p_midi_host->next_in_jack < MAX_IN_JACKS) {
p_midi_host->in_jack_info[p_midi_host->next_in_jack].jack_id = p_mdij->bJackID;
p_midi_host->in_jack_info[p_midi_host->next_in_jack].jack_type = p_mdij->bJackType;
p_midi_host->in_jack_info[p_midi_host->next_in_jack].string_index = p_mdij->iJack;
++p_midi_host->next_in_jack;
// Keep track of any string descriptor that might be here
if (p_mdij->iJack != 0) {
p_midi_host->all_string_indices[p_midi_host->num_string_indices++] = p_mdij->iJack;
}
}
#endif
} else if (p_mdij->bDescriptorSubType == MIDI_CS_INTERFACE_OUT_JACK) {
// then it is an out jack
TU_LOG2("Found out jack\r\n");
#if CFG_MIDI_HOST_DEVSTRINGS
if (p_midi_host->next_out_jack < MAX_OUT_JACKS) {
midi_desc_out_jack_t const *p_mdoj = (midi_desc_out_jack_t const *) p_desc;
p_midi_host->out_jack_info[p_midi_host->next_out_jack].jack_id = p_mdoj->bJackID;
p_midi_host->out_jack_info[p_midi_host->next_out_jack].jack_type = p_mdoj->bJackType;
p_midi_host->out_jack_info[p_midi_host->next_out_jack].num_source_ids = p_mdoj->bNrInputPins;
const struct associated_jack_s {
uint8_t id;
uint8_t pin;
} *associated_jack = (const struct associated_jack_s *) (p_desc + 6);
int jack;
for (jack = 0; jack < p_mdoj->bNrInputPins; jack++) {
p_midi_host->out_jack_info[p_midi_host->next_out_jack].source_ids[jack] = associated_jack->id;
}
p_midi_host->out_jack_info[p_midi_host->next_out_jack].string_index = *(p_desc + 6 + p_mdoj->bNrInputPins * 2);
++p_midi_host->next_out_jack;
if (p_mdoj->iJack != 0) {
p_midi_host->all_string_indices[p_midi_host->num_string_indices++] = p_mdoj->iJack;
}
}
#endif
} else if (p_mdij->bDescriptorSubType == MIDI_CS_INTERFACE_ELEMENT) {
// the it is an element;
#if CFG_MIDI_HOST_DEVSTRINGS
TU_LOG1("Found element; strings not supported\r\n");
#else
TU_LOG2("Found element\r\n");
#endif
} else {
TU_LOG2("Unknown CS Interface sub-type %u\r\n", p_mdij->bDescriptorSubType);
TU_VERIFY(false);// unknown CS Interface sub-type
}
len_parsed += p_mdij->bLength;
} else if (p_mdh->bDescriptorType == TUSB_DESC_CS_ENDPOINT) {
TU_LOG2("found CS_ENDPOINT Descriptor for %u\r\n", prev_ep_addr);
TU_VERIFY(prev_ep_addr != 0);
// parse out the mapping between the device's embedded jacks and the endpoints
// Each embedded IN jack is associated with an OUT endpoint
midi_cs_desc_endpoint_t const *p_csep = (midi_cs_desc_endpoint_t const *) p_mdh;
if (tu_edpt_dir(prev_ep_addr) == TUSB_DIR_OUT) {
TU_VERIFY(p_midi_host->ep_out == prev_ep_addr);
TU_VERIFY(p_midi_host->num_cables_tx == 0);
p_midi_host->num_cables_tx = p_csep->bNumEmbMIDIJack;
#if CFG_MIDI_HOST_DEVSTRINGS
uint8_t jack;
uint8_t max_jack = p_midi_host->num_cables_tx;
if (max_jack > sizeof(p_midi_host->ep_out_associated_jacks)) {
max_jack = sizeof(p_midi_host->ep_out_associated_jacks);
}
for (jack = 0; jack < max_jack; jack++) {
p_midi_host->ep_out_associated_jacks[jack] = p_csep->baAssocJackID[jack];
}
#endif
} else {
TU_VERIFY(p_midi_host->ep_in == prev_ep_addr);
TU_VERIFY(p_midi_host->num_cables_rx == 0);
p_midi_host->num_cables_rx = p_csep->bNumEmbMIDIJack;
#if CFG_MIDI_HOST_DEVSTRINGS
uint8_t jack;
uint8_t max_jack = p_midi_host->num_cables_rx;
if (max_jack > sizeof(p_midi_host->ep_in_associated_jacks)) {
max_jack = sizeof(p_midi_host->ep_in_associated_jacks);
}
for (jack = 0; jack < max_jack; jack++) {
p_midi_host->ep_in_associated_jacks[jack] = p_csep->baAssocJackID[jack];
}
#endif
}
len_parsed += p_csep->bLength;
prev_ep_addr = 0;
} else if (p_mdh->bDescriptorType == TUSB_DESC_ENDPOINT) {
// parse out the bulk endpoint info
tusb_desc_endpoint_t const *p_ep = (tusb_desc_endpoint_t const *) p_mdh;
TU_LOG2("found ENDPOINT Descriptor for %u\r\n", p_ep->bEndpointAddress);
if (tu_edpt_dir(p_ep->bEndpointAddress) == TUSB_DIR_OUT) {
TU_VERIFY(p_midi_host->ep_out == 0);
TU_VERIFY(p_midi_host->num_cables_tx == 0);
p_midi_host->ep_out = p_ep->bEndpointAddress;
prev_ep_addr = p_midi_host->ep_out;
out_desc = p_ep;
} else {
TU_VERIFY(p_midi_host->ep_in == 0);
TU_VERIFY(p_midi_host->num_cables_rx == 0);
p_midi_host->ep_in = p_ep->bEndpointAddress;
prev_ep_addr = p_midi_host->ep_in;
in_desc = p_ep;
}
len_parsed += p_mdh->bLength;
}
p_desc = tu_desc_next(p_desc);
p_mdh = (midi_desc_header_t const *) p_desc;
}
TU_VERIFY((p_midi_host->ep_out != 0 && p_midi_host->num_cables_tx != 0) ||
(p_midi_host->ep_in != 0 && p_midi_host->num_cables_rx != 0));
TU_LOG1("MIDI descriptor parsed successfully\r\n");
// remove duplicate string indices
for (int idx = 0; idx < p_midi_host->num_string_indices; idx++) {
for (int jdx = idx + 1; jdx < p_midi_host->num_string_indices; jdx++) {
while (jdx < p_midi_host->num_string_indices && p_midi_host->all_string_indices[idx] == p_midi_host->all_string_indices[jdx]) {
// delete the duplicate by overwriting it with the last entry and reducing the number of entries by 1
p_midi_host->all_string_indices[jdx] = p_midi_host->all_string_indices[p_midi_host->num_string_indices - 1];
--p_midi_host->num_string_indices;
}
}
}
if (in_desc) {
TU_ASSERT(tuh_edpt_open(dev_addr, in_desc));
tu_edpt_stream_open(&p_midi_host->ep_stream.rx, in_desc);
}
if (out_desc) {
TU_ASSERT(tuh_edpt_open(dev_addr, out_desc));
tu_edpt_stream_open(&p_midi_host->ep_stream.tx, out_desc);
}
p_midi_host->dev_addr = dev_addr;
return true;
}
bool tuh_midi_configured(uint8_t dev_addr) {
midih_interface_t *p_midi_host = find_midi_by_daddr(dev_addr);
TU_VERIFY(p_midi_host != NULL);
return p_midi_host->configured;
}
bool midih_set_config(uint8_t dev_addr, uint8_t itf_num) {
(void) itf_num;
midih_interface_t *p_midi_host = find_midi_by_daddr(dev_addr);
TU_VERIFY(p_midi_host != NULL);
p_midi_host->configured = true;
if (tuh_midi_mount_cb) {
tuh_midi_mount_cb(dev_addr, p_midi_host->ep_in, p_midi_host->ep_out, p_midi_host->num_cables_rx, p_midi_host->num_cables_tx);
}
// No special config things to do for MIDI
usbh_driver_set_config_complete(dev_addr, p_midi_host->itf_num);
return true;
}
//--------------------------------------------------------------------+
// Stream API
//--------------------------------------------------------------------+
bool tuh_midi_read_poll(uint8_t dev_addr) {
midih_interface_t *p_midi_host = find_midi_by_daddr(dev_addr);
TU_VERIFY(p_midi_host != NULL);
return tu_edpt_stream_read_xfer(dev_addr, &p_midi_host->ep_stream.rx) > 0;
}
uint32_t tuh_midi_stream_write(uint8_t dev_addr, uint8_t cable_num, uint8_t const *buffer, uint32_t bufsize) {
midih_interface_t *p_midi_host = find_midi_by_daddr(dev_addr);
TU_VERIFY(p_midi_host != NULL);
TU_VERIFY(cable_num < p_midi_host->num_cables_tx);
midi_stream_t *stream = &p_midi_host->stream_write;
uint32_t i = 0;
while ((i < bufsize) && (tu_edpt_stream_write_available(dev_addr, &p_midi_host->ep_stream.tx) >= 4)) {
uint8_t const data = buffer[i];
i++;
if (data >= MIDI_STATUS_SYSREAL_TIMING_CLOCK) {
// real-time messages need to be sent right away
midi_stream_t streamrt;
streamrt.buffer[0] = MIDI_CIN_SYSEX_END_1BYTE;
streamrt.buffer[1] = data;
streamrt.index = 2;
streamrt.total = 2;
uint32_t const count = tu_edpt_stream_write(dev_addr, &p_midi_host->ep_stream.tx, streamrt.buffer, 4);
TU_ASSERT(count == 4, i); // Check FIFO overflown, since we already check fifo remaining. It is probably race condition
} else if (stream->index == 0) {
//------------- New event packet -------------//
uint8_t const msg = data >> 4;
stream->index = 2;
stream->buffer[1] = data;
// Check to see if we're still in a SysEx transmit.
if (stream->buffer[0] == MIDI_CIN_SYSEX_START) {
if (data == MIDI_STATUS_SYSEX_END) {
stream->buffer[0] = MIDI_CIN_SYSEX_END_1BYTE;
stream->total = 2;
} else {
stream->total = 4;
}
} else if ((msg >= 0x8 && msg <= 0xB) || msg == 0xE) {
// Channel Voice Messages
stream->buffer[0] = (uint8_t) ((cable_num << 4) | msg);
stream->total = 4;
} else if (msg == 0xC || msg == 0xD) {
// Channel Voice Messages, two-byte variants (Program Change and Channel Pressure)
stream->buffer[0] = (uint8_t) ((cable_num << 4) | msg);
stream->total = 3;
} else if (msg == 0xf) {
// System message
if (data == MIDI_STATUS_SYSEX_START) {
stream->buffer[0] = MIDI_CIN_SYSEX_START;
stream->total = 4;
} else if (data == MIDI_STATUS_SYSCOM_TIME_CODE_QUARTER_FRAME || data == MIDI_STATUS_SYSCOM_SONG_SELECT) {
stream->buffer[0] = MIDI_CIN_SYSCOM_2BYTE;
stream->total = 3;
} else if (data == MIDI_STATUS_SYSCOM_SONG_POSITION_POINTER) {
stream->buffer[0] = MIDI_CIN_SYSCOM_3BYTE;
stream->total = 4;
} else {
stream->buffer[0] = MIDI_CIN_SYSEX_END_1BYTE;
stream->total = 2;
}
} else {
// Pack individual bytes if we don't support packing them into words.
stream->buffer[0] = (uint8_t) (cable_num << 4 | 0xf);
stream->buffer[2] = 0;
stream->buffer[3] = 0;
stream->index = 2;
stream->total = 2;
}
} else {
//------------- On-going (buffering) packet -------------//
TU_ASSERT(stream->index < 4, i);
stream->buffer[stream->index] = data;
stream->index++;
// See if this byte ends a SysEx.
if (stream->buffer[0] == MIDI_CIN_SYSEX_START && data == MIDI_STATUS_SYSEX_END) {
stream->buffer[0] = MIDI_CIN_SYSEX_START + (stream->index - 1);
stream->total = stream->index;
}
}
// Send out packet
if (stream->index >= 2 && stream->index == stream->total) {
// zeroes unused bytes
for (uint8_t idx = stream->total; idx < 4; idx++) { stream->buffer[idx] = 0; }
TU_LOG3_MEM(stream->buffer, 4, 2);
uint32_t const count = tu_edpt_stream_write(dev_addr, &p_midi_host->ep_stream.tx, stream->buffer, 4);
// complete current event packet, reset stream
stream->index = 0;
stream->total = 0;
// FIFO overflown, since we already check fifo remaining. It is probably race condition
TU_ASSERT(count == 4, i);
}
}
return i;
}
bool tuh_midi_packet_write (uint8_t dev_addr, uint8_t const packet[4]) {
midih_interface_t *p_midi_host = find_midi_by_daddr(dev_addr);
TU_VERIFY(p_midi_host != NULL);
return 4 == tu_edpt_stream_write(dev_addr, &p_midi_host->ep_stream.tx, packet, 4);
}
uint32_t tuh_midi_stream_flush(uint8_t dev_addr) {
midih_interface_t *p_midi = find_midi_by_daddr(dev_addr);
TU_VERIFY(p_midi != NULL);
return tu_edpt_stream_write_xfer(p_midi->dev_addr, &p_midi->ep_stream.tx);
}
//--------------------------------------------------------------------+
// Helper
//--------------------------------------------------------------------+
uint8_t tuh_midih_get_num_tx_cables (uint8_t dev_addr)
{
midih_interface_t *p_midi_host = find_midi_by_daddr(dev_addr);
TU_VERIFY(p_midi_host != NULL);
TU_VERIFY(p_midi_host->ep_out != 0); // returns 0 if fails
return p_midi_host->num_cables_tx;
}
uint8_t tuh_midih_get_num_rx_cables (uint8_t dev_addr)
{
midih_interface_t *p_midi_host = find_midi_by_daddr(dev_addr);
TU_VERIFY(p_midi_host != NULL);
TU_VERIFY(p_midi_host->ep_in != 0); // returns 0 if fails
return p_midi_host->num_cables_rx;
}
bool tuh_midi_packet_read (uint8_t dev_addr, uint8_t packet[4])
{
midih_interface_t *p_midi_host = find_midi_by_daddr(dev_addr);
TU_VERIFY(p_midi_host != NULL);
TU_VERIFY(tu_edpt_stream_read_available(&p_midi_host->ep_stream.rx) >= 4);
return 4 == tu_edpt_stream_read(dev_addr, &p_midi_host->ep_stream.rx, packet, 4);
}
uint32_t tuh_midi_stream_read(uint8_t dev_addr, uint8_t *p_cable_num, uint8_t *p_buffer, uint16_t bufsize) {
midih_interface_t *p_midi_host = find_midi_by_daddr(dev_addr);
TU_VERIFY(p_midi_host != NULL);
uint32_t bytes_buffered = 0;
TU_ASSERT(p_cable_num);
TU_ASSERT(p_buffer);
TU_ASSERT(bufsize);
uint8_t one_byte;
if (!tu_edpt_stream_peek(&p_midi_host->ep_stream.rx, &one_byte)) {
return 0;
}
*p_cable_num = (one_byte >> 4) & 0xf;
uint32_t nread = tu_edpt_stream_read(dev_addr, &p_midi_host->ep_stream.rx, p_midi_host->stream_read.buffer, 4);
static uint16_t cable_sysex_in_progress; // bit i is set if received MIDI_STATUS_SYSEX_START but not MIDI_STATUS_SYSEX_END
while (nread == 4 && bytes_buffered < bufsize) {
*p_cable_num = (p_midi_host->stream_read.buffer[0] >> 4) & 0x0f;
uint8_t bytes_to_add_to_stream = 0;
if (*p_cable_num < p_midi_host->num_cables_rx) {
// ignore the CIN field; too many devices out there encode this wrong
uint8_t status = p_midi_host->stream_read.buffer[1];
uint16_t cable_mask = (uint16_t) (1 << *p_cable_num);
if (status <= MIDI_MAX_DATA_VAL || status == MIDI_STATUS_SYSEX_START) {
if (status == MIDI_STATUS_SYSEX_START) {
cable_sysex_in_progress |= cable_mask;
}
// only add the packet if a sysex message is in progress
if (cable_sysex_in_progress & cable_mask) {
++bytes_to_add_to_stream;
for (uint8_t idx = 2; idx < 4; idx++) {
if (p_midi_host->stream_read.buffer[idx] <= MIDI_MAX_DATA_VAL) {
++bytes_to_add_to_stream;
} else if (p_midi_host->stream_read.buffer[idx] == MIDI_STATUS_SYSEX_END) {
++bytes_to_add_to_stream;
cable_sysex_in_progress &= (uint16_t) ~cable_mask;
idx = 4;// force the loop to exit; I hate break statements in loops
}
}
}
} else if (status < MIDI_STATUS_SYSEX_START) {
// then it is a channel message either three bytes or two
uint8_t fake_cin = (status & 0xf0) >> 4;
switch (fake_cin) {
case MIDI_CIN_NOTE_OFF:
case MIDI_CIN_NOTE_ON:
case MIDI_CIN_POLY_KEYPRESS:
case MIDI_CIN_CONTROL_CHANGE:
case MIDI_CIN_PITCH_BEND_CHANGE:
bytes_to_add_to_stream = 3;
break;
case MIDI_CIN_PROGRAM_CHANGE:
case MIDI_CIN_CHANNEL_PRESSURE:
bytes_to_add_to_stream = 2;
break;
default:
break;// Should not get this
}
cable_sysex_in_progress &= (uint16_t) ~cable_mask;
} else if (status < MIDI_STATUS_SYSREAL_TIMING_CLOCK) {
switch (status) {
case MIDI_STATUS_SYSCOM_TIME_CODE_QUARTER_FRAME:
case MIDI_STATUS_SYSCOM_SONG_SELECT:
bytes_to_add_to_stream = 2;
break;
case MIDI_STATUS_SYSCOM_SONG_POSITION_POINTER:
bytes_to_add_to_stream = 3;
break;
case MIDI_STATUS_SYSCOM_TUNE_REQUEST:
case MIDI_STATUS_SYSEX_END:
bytes_to_add_to_stream = 1;
break;
default:
break;
cable_sysex_in_progress &= (uint16_t) ~cable_mask;
}
} else {
// Real-time message: can be inserted into a sysex message,
// so do don't clear cable_sysex_in_progress bit
bytes_to_add_to_stream = 1;
}
}
for (uint8_t idx = 1; idx <= bytes_to_add_to_stream; idx++) {
*p_buffer++ = p_midi_host->stream_read.buffer[idx];
}
bytes_buffered += bytes_to_add_to_stream;
nread = 0;
if (tu_edpt_stream_peek(&p_midi_host->ep_stream.rx, &one_byte)) {
uint8_t new_cable = (one_byte >> 4) & 0xf;
if (new_cable == *p_cable_num) {
// still on the same cable. Continue reading the stream
nread = tu_edpt_stream_read(dev_addr, &p_midi_host->ep_stream.rx, p_midi_host->stream_read.buffer, 4);
}
}
}
return bytes_buffered;
}
uint8_t tuh_midi_get_num_rx_cables(uint8_t dev_addr)
{
midih_interface_t *p_midi_host = find_midi_by_daddr(dev_addr);
TU_VERIFY(p_midi_host != NULL);
uint8_t num_cables = 0;
if (p_midi_host)
{
num_cables = p_midi_host->num_cables_rx;
}
return num_cables;
}
uint8_t tuh_midi_get_num_tx_cables(uint8_t dev_addr)
{
midih_interface_t *p_midi_host = find_midi_by_daddr(dev_addr);
TU_VERIFY(p_midi_host != NULL);
uint8_t num_cables = 0;
if (p_midi_host)
{
num_cables = p_midi_host->num_cables_tx;
}
return num_cables;
}
#if CFG_MIDI_HOST_DEVSTRINGS
static uint8_t find_string_index(midih_interface_t *ptr, uint8_t jack_id)
{
uint8_t index = 0;
uint8_t assoc;
for (assoc = 0; index == 0 && assoc < ptr->next_in_jack; assoc++)
{
if (jack_id == ptr->in_jack_info[assoc].jack_id)
{
index = ptr->in_jack_info[assoc].string_index;
}
}
for (assoc = 0; index == 0 && assoc < ptr->next_out_jack; assoc++)
{
if (jack_id == ptr->out_jack_info[assoc].jack_id)
{
index = ptr->out_jack_info[assoc].string_index;
}
}
return index;
}
#endif
#if CFG_MIDI_HOST_DEVSTRINGS
uint8_t tuh_midi_get_rx_cable_istrings(uint8_t dev_addr, uint8_t* istrings, uint8_t max_istrings) {
midih_interface_t *p_midi_host = find_midi_by_daddr(dev_addr);
TU_VERIFY(p_midi_host != NULL, 0);
uint8_t nstrings = p_midi_host->num_cables_rx;
if (nstrings > max_istrings) {
nstrings = max_istrings;
}
for (uint8_t jack = 0; jack<nstrings; jack++) {
uint8_t jack_id = p_midi_host->ep_in_associated_jacks[jack];
istrings[jack] = find_string_index(p_midi_host, jack_id);
}
return nstrings;
}
uint8_t tuh_midi_get_tx_cable_istrings(uint8_t dev_addr, uint8_t* istrings, uint8_t max_istrings)
{
midih_interface_t *p_midi_host = find_midi_by_daddr(dev_addr);
TU_VERIFY(p_midi_host != NULL, 0);
uint8_t nstrings = p_midi_host->num_cables_tx;
if (nstrings > max_istrings) {
nstrings = max_istrings;
}
for (uint8_t jack = 0; jack<nstrings; jack++) {
uint8_t jack_id = p_midi_host->ep_out_associated_jacks[jack];
istrings[jack] = find_string_index(p_midi_host, jack_id);
}
return nstrings;
}
#endif
uint8_t tuh_midi_get_all_istrings(uint8_t dev_addr, const uint8_t** istrings)
{
midih_interface_t *p_midi_host = find_midi_by_daddr(dev_addr);
TU_VERIFY(p_midi_host != NULL);
uint8_t nstrings = p_midi_host->num_string_indices;
if (nstrings) { *istrings = p_midi_host->all_string_indices; }
return nstrings;
}
#endif