2529 lines
90 KiB
C
2529 lines
90 KiB
C
/*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2019 Ha Thach (tinyusb.org)
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*
|
|
* This file is part of the TinyUSB stack.
|
|
*
|
|
* Contribution
|
|
* - Heiko Kuester: add support of CH34x & PL2303, improve support of FTDI & CP210x
|
|
*/
|
|
|
|
#include "tusb_option.h"
|
|
|
|
#if (CFG_TUH_ENABLED && CFG_TUH_CDC)
|
|
|
|
#include "host/usbh.h"
|
|
#include "host/usbh_pvt.h"
|
|
|
|
#include "cdc_host.h"
|
|
#include "serial/ftdi_sio.h"
|
|
#include "serial/cp210x.h"
|
|
#include "serial/ch34x.h"
|
|
#include "serial/pl2303.h"
|
|
|
|
// Level where CFG_TUSB_DEBUG must be at least for this driver is logged
|
|
#ifndef CFG_TUH_CDC_LOG_LEVEL
|
|
#define CFG_TUH_CDC_LOG_LEVEL 2
|
|
#endif
|
|
|
|
#define TU_LOG_DRV(...) TU_LOG(CFG_TUH_CDC_LOG_LEVEL, __VA_ARGS__)
|
|
#define TU_LOG_CDC(_cdc, _format, ...) TU_LOG_DRV("[:%u:%u] CDCh %s " _format "\r\n", _cdc->daddr, _cdc->bInterfaceNumber, \
|
|
serial_drivers[_cdc->serial_drid].name, ##__VA_ARGS__)
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Host CDC Interface
|
|
//--------------------------------------------------------------------+
|
|
|
|
typedef struct {
|
|
uint8_t daddr;
|
|
uint8_t bInterfaceNumber;
|
|
uint8_t bInterfaceSubClass;
|
|
uint8_t bInterfaceProtocol;
|
|
|
|
uint8_t ep_notif;
|
|
uint8_t serial_drid; // Serial Driver ID
|
|
bool mounted; // Enumeration is complete
|
|
|
|
struct {
|
|
TU_ATTR_ALIGNED(4) cdc_line_coding_t coding; // Baudrate, stop bits, parity, data width
|
|
cdc_line_control_state_t control_state; // DTR, RTS
|
|
} line, requested_line;
|
|
|
|
tuh_xfer_cb_t user_complete_cb; // required since we handle request internally first
|
|
|
|
union {
|
|
struct {
|
|
cdc_acm_capability_t capability;
|
|
} acm;
|
|
|
|
#if CFG_TUH_CDC_FTDI
|
|
ftdi_private_t ftdi;
|
|
#endif
|
|
|
|
#if CFG_TUH_CDC_PL2303
|
|
pl2303_private_t pl2303;
|
|
#endif
|
|
};
|
|
|
|
struct {
|
|
tu_edpt_stream_t tx;
|
|
tu_edpt_stream_t rx;
|
|
|
|
uint8_t tx_ff_buf[CFG_TUH_CDC_TX_BUFSIZE];
|
|
uint8_t rx_ff_buf[CFG_TUH_CDC_RX_BUFSIZE];
|
|
} stream;
|
|
} cdch_interface_t;
|
|
|
|
typedef struct {
|
|
TUH_EPBUF_DEF(tx, CFG_TUH_CDC_TX_EPSIZE);
|
|
TUH_EPBUF_DEF(rx, CFG_TUH_CDC_RX_EPSIZE);
|
|
} cdch_epbuf_t;
|
|
|
|
static cdch_interface_t cdch_data[CFG_TUH_CDC];
|
|
CFG_TUH_MEM_SECTION static cdch_epbuf_t cdch_epbuf[CFG_TUH_CDC];
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Serial Driver
|
|
//--------------------------------------------------------------------+
|
|
|
|
// General driver
|
|
static void cdch_process_set_config(tuh_xfer_t *xfer);
|
|
static void cdch_process_line_state_on_enum(tuh_xfer_t *xfer); // invoked after set config is processed
|
|
static void cdch_internal_control_complete(tuh_xfer_t *xfer);
|
|
static void cdch_set_line_coding_stage1_baudrate_complete(tuh_xfer_t *xfer);
|
|
static void cdch_set_line_coding_stage2_data_format_complete(tuh_xfer_t *xfer);
|
|
|
|
//------------- ACM prototypes -------------//
|
|
static bool acm_open(uint8_t daddr, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
|
|
static bool acm_process_set_config(cdch_interface_t *p_cdc, tuh_xfer_t *xfer);
|
|
static void acm_internal_control_complete(cdch_interface_t *p_cdc, tuh_xfer_t *xfer);
|
|
|
|
static bool acm_set_line_coding(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
|
|
static bool acm_set_control_line_state(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
|
|
|
|
//------------- FTDI prototypes -------------//
|
|
#if CFG_TUH_CDC_FTDI
|
|
static uint16_t const ftdi_vid_pid_list[][2] = {CFG_TUH_CDC_FTDI_VID_PID_LIST};
|
|
static bool ftdi_open(uint8_t daddr, const tusb_desc_interface_t * itf_desc, uint16_t max_len);
|
|
static bool ftdi_proccess_set_config(cdch_interface_t *p_cdc, tuh_xfer_t *xfer);
|
|
static void ftdi_internal_control_complete(cdch_interface_t* p_cdc, tuh_xfer_t *xfer);
|
|
|
|
static bool ftdi_set_baudrate(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
|
|
static bool ftdi_set_data_format(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
|
|
static bool ftdi_set_modem_ctrl(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
|
|
#endif
|
|
|
|
//------------- CP210X prototypes -------------//
|
|
#if CFG_TUH_CDC_CP210X
|
|
static uint16_t const cp210x_vid_pid_list[][2] = {CFG_TUH_CDC_CP210X_VID_PID_LIST};
|
|
|
|
static bool cp210x_open(uint8_t daddr, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
|
|
static bool cp210x_process_set_config(cdch_interface_t *p_cdc, tuh_xfer_t *xfer);
|
|
static void cp210x_internal_control_complete(cdch_interface_t *p_cdc, tuh_xfer_t *xfer);
|
|
|
|
static bool cp210x_set_baudrate(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
|
|
static bool cp210x_set_data_format(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
|
|
static bool cp210x_set_modem_ctrl(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
|
|
#endif
|
|
|
|
//------------- CH34x prototypes -------------//
|
|
#if CFG_TUH_CDC_CH34X
|
|
static uint16_t const ch34x_vid_pid_list[][2] = {CFG_TUH_CDC_CH34X_VID_PID_LIST};
|
|
|
|
static bool ch34x_open(uint8_t daddr, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
|
|
static bool ch34x_process_set_config(cdch_interface_t *p_cdc, tuh_xfer_t *xfer);
|
|
static void ch34x_internal_control_complete(cdch_interface_t *p_cdc, tuh_xfer_t *xfer);
|
|
|
|
static bool ch34x_set_baudrate(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
|
|
static bool ch34x_set_data_format(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
|
|
static bool ch34x_set_modem_ctrl(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
|
|
#endif
|
|
|
|
//------------- PL2303 prototypes -------------//
|
|
#if CFG_TUH_CDC_PL2303
|
|
static uint16_t const pl2303_vid_pid_list[][2] = {CFG_TUH_CDC_PL2303_VID_PID_LIST};
|
|
static const pl2303_type_data_t pl2303_type_data[PL2303_TYPE_COUNT] = {PL2303_TYPE_DATA};
|
|
|
|
static bool pl2303_open(uint8_t daddr, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
|
|
static bool pl2303_process_set_config(cdch_interface_t *p_cdc, tuh_xfer_t *xfer);
|
|
static void pl2303_internal_control_complete(cdch_interface_t *p_cdc, tuh_xfer_t *xfer);
|
|
|
|
static bool pl2303_set_line_coding(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
|
|
static bool pl2303_set_modem_ctrl(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
|
|
#endif
|
|
|
|
//------------- Common -------------//
|
|
enum {
|
|
SERIAL_DRIVER_ACM = 0,
|
|
|
|
#if CFG_TUH_CDC_FTDI
|
|
SERIAL_DRIVER_FTDI,
|
|
#endif
|
|
|
|
#if CFG_TUH_CDC_CP210X
|
|
SERIAL_DRIVER_CP210X,
|
|
#endif
|
|
|
|
#if CFG_TUH_CDC_CH34X
|
|
SERIAL_DRIVER_CH34X,
|
|
#endif
|
|
|
|
#if CFG_TUH_CDC_PL2303
|
|
SERIAL_DRIVER_PL2303,
|
|
#endif
|
|
|
|
SERIAL_DRIVER_COUNT
|
|
};
|
|
|
|
typedef bool (*serial_driver_func_t)(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
|
|
|
|
typedef struct {
|
|
uint16_t const (*vid_pid_list)[2];
|
|
uint16_t const vid_pid_count;
|
|
bool (*const open)(uint8_t daddr, const tusb_desc_interface_t * itf_desc, uint16_t max_len);
|
|
bool (*const process_set_config)(cdch_interface_t * p_cdc, tuh_xfer_t * xfer);
|
|
void (*const request_complete)(cdch_interface_t * p_cdc, tuh_xfer_t * xfer); // internal request complete handler to update line state
|
|
|
|
serial_driver_func_t set_control_line_state, set_baudrate, set_data_format, set_line_coding;
|
|
|
|
#if CFG_TUSB_DEBUG && CFG_TUSB_DEBUG >= CFG_TUH_CDC_LOG_LEVEL
|
|
const char * name;
|
|
#endif
|
|
} cdch_serial_driver_t;
|
|
|
|
#if CFG_TUSB_DEBUG >= CFG_TUH_CDC_LOG_LEVEL
|
|
#define DRIVER_NAME_DECLARE(_str) .name = _str
|
|
#else
|
|
#define DRIVER_NAME_DECLARE(_str)
|
|
#endif
|
|
|
|
// Note driver list must be in the same order as SERIAL_DRIVER enum
|
|
static const cdch_serial_driver_t serial_drivers[] = {
|
|
{
|
|
.vid_pid_list = NULL,
|
|
.vid_pid_count = 0,
|
|
.open = acm_open,
|
|
.process_set_config = acm_process_set_config,
|
|
.request_complete = acm_internal_control_complete,
|
|
.set_control_line_state = acm_set_control_line_state,
|
|
.set_baudrate = acm_set_line_coding,
|
|
.set_data_format = acm_set_line_coding,
|
|
.set_line_coding = acm_set_line_coding,
|
|
DRIVER_NAME_DECLARE("ACM")
|
|
},
|
|
|
|
#if CFG_TUH_CDC_FTDI
|
|
{
|
|
.vid_pid_list = ftdi_vid_pid_list,
|
|
.vid_pid_count = TU_ARRAY_SIZE(ftdi_vid_pid_list),
|
|
.open = ftdi_open,
|
|
.process_set_config = ftdi_proccess_set_config,
|
|
.request_complete = ftdi_internal_control_complete,
|
|
.set_control_line_state = ftdi_set_modem_ctrl,
|
|
.set_baudrate = ftdi_set_baudrate,
|
|
.set_data_format = ftdi_set_data_format,
|
|
.set_line_coding = NULL, // 2 stage set line coding
|
|
DRIVER_NAME_DECLARE("FTDI")
|
|
},
|
|
#endif
|
|
|
|
#if CFG_TUH_CDC_CP210X
|
|
{
|
|
.vid_pid_list = cp210x_vid_pid_list,
|
|
.vid_pid_count = TU_ARRAY_SIZE(cp210x_vid_pid_list),
|
|
.open = cp210x_open,
|
|
.process_set_config = cp210x_process_set_config,
|
|
.request_complete = cp210x_internal_control_complete,
|
|
.set_control_line_state = cp210x_set_modem_ctrl,
|
|
.set_baudrate = cp210x_set_baudrate,
|
|
.set_data_format = cp210x_set_data_format,
|
|
.set_line_coding = NULL, // 2 stage set line coding
|
|
DRIVER_NAME_DECLARE("CP210x")
|
|
},
|
|
#endif
|
|
|
|
#if CFG_TUH_CDC_CH34X
|
|
{
|
|
.vid_pid_list = ch34x_vid_pid_list,
|
|
.vid_pid_count = TU_ARRAY_SIZE(ch34x_vid_pid_list),
|
|
.open = ch34x_open,
|
|
.process_set_config = ch34x_process_set_config,
|
|
.request_complete = ch34x_internal_control_complete,
|
|
|
|
.set_control_line_state = ch34x_set_modem_ctrl,
|
|
.set_baudrate = ch34x_set_baudrate,
|
|
.set_data_format = ch34x_set_data_format,
|
|
.set_line_coding = NULL, // 2 stage set line coding
|
|
DRIVER_NAME_DECLARE("CH34x")
|
|
},
|
|
#endif
|
|
|
|
#if CFG_TUH_CDC_PL2303
|
|
{
|
|
.vid_pid_list = pl2303_vid_pid_list,
|
|
.vid_pid_count = TU_ARRAY_SIZE(pl2303_vid_pid_list),
|
|
.open = pl2303_open,
|
|
.process_set_config = pl2303_process_set_config,
|
|
.request_complete = pl2303_internal_control_complete,
|
|
.set_control_line_state = pl2303_set_modem_ctrl,
|
|
.set_baudrate = pl2303_set_line_coding,
|
|
.set_data_format = pl2303_set_line_coding,
|
|
.set_line_coding = pl2303_set_line_coding,
|
|
DRIVER_NAME_DECLARE("PL2303")
|
|
}
|
|
#endif
|
|
};
|
|
|
|
TU_VERIFY_STATIC(TU_ARRAY_SIZE(serial_drivers) == SERIAL_DRIVER_COUNT, "Serial driver count mismatch");
|
|
|
|
//--------------------------------------------------------------------+
|
|
// INTERNAL OBJECT & FUNCTION DECLARATION
|
|
//--------------------------------------------------------------------+
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline cdch_interface_t * get_itf(uint8_t idx) {
|
|
TU_ASSERT(idx < CFG_TUH_CDC, NULL);
|
|
cdch_interface_t * p_cdc = &cdch_data[idx];
|
|
return (p_cdc->daddr != 0) ? p_cdc : NULL;
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline uint8_t get_idx_by_ptr(cdch_interface_t* p_cdc) {
|
|
return (uint8_t) (p_cdc - cdch_data);
|
|
}
|
|
|
|
static inline uint8_t get_idx_by_ep_addr(uint8_t daddr, uint8_t ep_addr) {
|
|
for(uint8_t i=0; i<CFG_TUH_CDC; i++) {
|
|
cdch_interface_t * p_cdc = &cdch_data[i];
|
|
if ((p_cdc->daddr == daddr) &&
|
|
(ep_addr == p_cdc->ep_notif || ep_addr == p_cdc->stream.rx.ep_addr || ep_addr == p_cdc->stream.tx.ep_addr)) {
|
|
return i;
|
|
}
|
|
}
|
|
|
|
return TUSB_INDEX_INVALID_8;
|
|
}
|
|
|
|
// determine the interface from the completed transfer
|
|
static cdch_interface_t* get_itf_by_xfer(const tuh_xfer_t * xfer) {
|
|
TU_VERIFY(xfer->daddr != 0, NULL);
|
|
for(uint8_t i=0; i<CFG_TUH_CDC; i++) {
|
|
cdch_interface_t * p_cdc = &cdch_data[i];
|
|
if (p_cdc->daddr == xfer->daddr) {
|
|
switch (p_cdc->serial_drid) {
|
|
#if CFG_TUH_CDC_CP210X
|
|
case SERIAL_DRIVER_CP210X:
|
|
#endif
|
|
case SERIAL_DRIVER_ACM: {
|
|
// Driver use wIndex for bInterfaceNumber
|
|
const uint8_t itf_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
|
|
if (p_cdc->bInterfaceNumber == itf_num) {
|
|
return p_cdc;
|
|
}
|
|
break;
|
|
}
|
|
|
|
#if CFG_TUH_CDC_FTDI
|
|
case SERIAL_DRIVER_FTDI: {
|
|
// FTDI uses wIndex for channel number, if channel is 0 then it is the default channel
|
|
const uint8_t channel = (uint8_t) tu_le16toh(xfer->setup->wIndex);
|
|
if (p_cdc->ftdi.channel == 0 || p_cdc->ftdi.channel == channel) {
|
|
return p_cdc;
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#if CFG_TUH_CDC_CH34X
|
|
case SERIAL_DRIVER_CH34X:
|
|
// ch34x has only one interface
|
|
return p_cdc;
|
|
#endif
|
|
|
|
#if CFG_TUH_CDC_PL2303
|
|
case SERIAL_DRIVER_PL2303:
|
|
// pl2303 has only one interface
|
|
return p_cdc;
|
|
#endif
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static cdch_interface_t * make_new_itf(uint8_t daddr, tusb_desc_interface_t const * itf_desc) {
|
|
for(uint8_t i=0; i<CFG_TUH_CDC; i++) {
|
|
if (cdch_data[i].daddr == 0) {
|
|
cdch_interface_t * p_cdc = &cdch_data[i];
|
|
p_cdc->daddr = daddr;
|
|
p_cdc->bInterfaceNumber = itf_desc->bInterfaceNumber;
|
|
p_cdc->bInterfaceSubClass = itf_desc->bInterfaceSubClass;
|
|
p_cdc->bInterfaceProtocol = itf_desc->bInterfaceProtocol;
|
|
p_cdc->line.coding = (cdc_line_coding_t) { 0, 0, 0, 0 };
|
|
p_cdc->line.control_state.value = 0;
|
|
return p_cdc;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static bool open_ep_stream_pair(cdch_interface_t * p_cdc , tusb_desc_endpoint_t const *desc_ep);
|
|
|
|
//--------------------------------------------------------------------+
|
|
// APPLICATION API
|
|
//--------------------------------------------------------------------+
|
|
|
|
uint8_t tuh_cdc_itf_get_index(uint8_t daddr, uint8_t itf_num) {
|
|
for (uint8_t i = 0; i < CFG_TUH_CDC; i++) {
|
|
const cdch_interface_t * p_cdc = &cdch_data[i];
|
|
if (p_cdc->daddr == daddr && p_cdc->bInterfaceNumber == itf_num) { return i; }
|
|
}
|
|
return TUSB_INDEX_INVALID_8;
|
|
}
|
|
|
|
bool tuh_cdc_itf_get_info(uint8_t idx, tuh_itf_info_t * info) {
|
|
cdch_interface_t * p_cdc = get_itf(idx);
|
|
TU_VERIFY(p_cdc && info);
|
|
|
|
info->daddr = p_cdc->daddr;
|
|
|
|
// re-construct interface descriptor
|
|
tusb_desc_interface_t * desc = &info->desc;
|
|
desc->bLength = sizeof(tusb_desc_interface_t);
|
|
desc->bDescriptorType = TUSB_DESC_INTERFACE;
|
|
|
|
desc->bInterfaceNumber = p_cdc->bInterfaceNumber;
|
|
desc->bAlternateSetting = 0;
|
|
desc->bNumEndpoints = 2u + (p_cdc->ep_notif ? 1u : 0u);
|
|
desc->bInterfaceClass = TUSB_CLASS_CDC;
|
|
desc->bInterfaceSubClass = p_cdc->bInterfaceSubClass;
|
|
desc->bInterfaceProtocol = p_cdc->bInterfaceProtocol;
|
|
desc->iInterface = 0; // not used yet
|
|
|
|
return true;
|
|
}
|
|
|
|
bool tuh_cdc_mounted(uint8_t idx) {
|
|
cdch_interface_t * p_cdc = get_itf(idx);
|
|
TU_VERIFY(p_cdc);
|
|
return p_cdc->mounted;
|
|
}
|
|
|
|
bool tuh_cdc_get_control_line_state_local(uint8_t idx, uint16_t* line_state) {
|
|
cdch_interface_t * p_cdc = get_itf(idx);
|
|
TU_VERIFY(p_cdc);
|
|
*line_state = p_cdc->line.control_state.value;
|
|
return true;
|
|
}
|
|
|
|
bool tuh_cdc_get_line_coding_local(uint8_t idx, cdc_line_coding_t * line_coding) {
|
|
cdch_interface_t * p_cdc = get_itf(idx);
|
|
TU_VERIFY(p_cdc);
|
|
*line_coding = p_cdc->line.coding;
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Write
|
|
//--------------------------------------------------------------------+
|
|
|
|
uint32_t tuh_cdc_write(uint8_t idx, void const * buffer, uint32_t bufsize) {
|
|
cdch_interface_t * p_cdc = get_itf(idx);
|
|
TU_VERIFY(p_cdc);
|
|
return tu_edpt_stream_write(p_cdc->daddr, &p_cdc->stream.tx, buffer, bufsize);
|
|
}
|
|
|
|
uint32_t tuh_cdc_write_flush(uint8_t idx) {
|
|
cdch_interface_t * p_cdc = get_itf(idx);
|
|
TU_VERIFY(p_cdc);
|
|
return tu_edpt_stream_write_xfer(p_cdc->daddr, &p_cdc->stream.tx);
|
|
}
|
|
|
|
bool tuh_cdc_write_clear(uint8_t idx) {
|
|
cdch_interface_t * p_cdc = get_itf(idx);
|
|
TU_VERIFY(p_cdc);
|
|
return tu_edpt_stream_clear(&p_cdc->stream.tx);
|
|
}
|
|
|
|
uint32_t tuh_cdc_write_available(uint8_t idx) {
|
|
cdch_interface_t * p_cdc = get_itf(idx);
|
|
TU_VERIFY(p_cdc);
|
|
return tu_edpt_stream_write_available(p_cdc->daddr, &p_cdc->stream.tx);
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Read
|
|
//--------------------------------------------------------------------+
|
|
|
|
uint32_t tuh_cdc_read (uint8_t idx, void * buffer, uint32_t bufsize) {
|
|
cdch_interface_t * p_cdc = get_itf(idx);
|
|
TU_VERIFY(p_cdc);
|
|
return tu_edpt_stream_read(p_cdc->daddr, &p_cdc->stream.rx, buffer, bufsize);
|
|
}
|
|
|
|
uint32_t tuh_cdc_read_available(uint8_t idx) {
|
|
cdch_interface_t * p_cdc = get_itf(idx);
|
|
TU_VERIFY(p_cdc);
|
|
return tu_edpt_stream_read_available(&p_cdc->stream.rx);
|
|
}
|
|
|
|
bool tuh_cdc_peek(uint8_t idx, uint8_t * ch) {
|
|
cdch_interface_t * p_cdc = get_itf(idx);
|
|
TU_VERIFY(p_cdc);
|
|
return tu_edpt_stream_peek(&p_cdc->stream.rx, ch);
|
|
}
|
|
|
|
bool tuh_cdc_read_clear (uint8_t idx) {
|
|
cdch_interface_t * p_cdc = get_itf(idx);
|
|
TU_VERIFY(p_cdc);
|
|
|
|
bool ret = tu_edpt_stream_clear(&p_cdc->stream.rx);
|
|
tu_edpt_stream_read_xfer(p_cdc->daddr, &p_cdc->stream.rx);
|
|
return ret;
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Control Endpoint API
|
|
//--------------------------------------------------------------------+
|
|
|
|
bool tuh_cdc_set_control_line_state(uint8_t idx, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
cdch_interface_t * p_cdc = get_itf(idx);
|
|
TU_VERIFY(p_cdc && p_cdc->serial_drid < SERIAL_DRIVER_COUNT);
|
|
TU_LOG_CDC(p_cdc, "set control line state dtr = %u rts = %u", p_cdc->requested_line.control_state.dtr, p_cdc->requested_line.control_state.rts);
|
|
const cdch_serial_driver_t * driver = &serial_drivers[p_cdc->serial_drid];
|
|
|
|
p_cdc->requested_line.control_state.value = (uint8_t) line_state;
|
|
p_cdc->user_complete_cb = complete_cb;
|
|
TU_VERIFY(driver->set_control_line_state(p_cdc, complete_cb ? cdch_internal_control_complete : NULL, user_data));
|
|
|
|
if (!complete_cb) {
|
|
// blocking, update line state if request was successful
|
|
p_cdc->line.control_state.value = (uint8_t) line_state;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool tuh_cdc_set_baudrate(uint8_t idx, uint32_t baudrate, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
cdch_interface_t *p_cdc = get_itf(idx);
|
|
TU_VERIFY(p_cdc && p_cdc->serial_drid < SERIAL_DRIVER_COUNT);
|
|
TU_LOG_CDC(p_cdc, "set baudrate %lu", baudrate);
|
|
const cdch_serial_driver_t *driver = &serial_drivers[p_cdc->serial_drid];
|
|
|
|
p_cdc->requested_line = p_cdc->line; // keep current line coding
|
|
p_cdc->requested_line.coding.bit_rate = baudrate;
|
|
p_cdc->user_complete_cb = complete_cb;
|
|
TU_VERIFY(driver->set_baudrate(p_cdc, complete_cb ? cdch_internal_control_complete : NULL, user_data));
|
|
|
|
if (!complete_cb) {
|
|
p_cdc->line.coding.bit_rate = baudrate;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool tuh_cdc_set_data_format(uint8_t idx, uint8_t stop_bits, uint8_t parity, uint8_t data_bits,
|
|
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
cdch_interface_t *p_cdc = get_itf(idx);
|
|
TU_VERIFY(p_cdc && p_cdc->serial_drid < SERIAL_DRIVER_COUNT);
|
|
TU_LOG_CDC(p_cdc, "set data format %u%c%s",
|
|
data_bits, CDC_LINE_CODING_PARITY_CHAR(parity),
|
|
CDC_LINE_CODING_STOP_BITS_TEXT(stop_bits));
|
|
const cdch_serial_driver_t *driver = &serial_drivers[p_cdc->serial_drid];
|
|
|
|
p_cdc->requested_line = p_cdc->line; // keep current line coding
|
|
p_cdc->requested_line.coding.stop_bits = stop_bits;
|
|
p_cdc->requested_line.coding.parity = parity;
|
|
p_cdc->requested_line.coding.data_bits = data_bits;
|
|
|
|
p_cdc->user_complete_cb = complete_cb;
|
|
TU_VERIFY(driver->set_data_format(p_cdc, complete_cb ? cdch_internal_control_complete : NULL, user_data));
|
|
|
|
if (!complete_cb) {
|
|
// blocking
|
|
p_cdc->line.coding.stop_bits = stop_bits;
|
|
p_cdc->line.coding.parity = parity;
|
|
p_cdc->line.coding.data_bits = data_bits;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool tuh_cdc_set_line_coding(uint8_t idx, cdc_line_coding_t const *line_coding,
|
|
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
cdch_interface_t *p_cdc = get_itf(idx);
|
|
TU_VERIFY(p_cdc && p_cdc->serial_drid < SERIAL_DRIVER_COUNT);
|
|
TU_LOG_CDC(p_cdc, "set line coding %lu %u%c%s",
|
|
line_coding->bit_rate, line_coding->data_bits,
|
|
CDC_LINE_CODING_PARITY_CHAR(line_coding->parity),
|
|
CDC_LINE_CODING_STOP_BITS_TEXT(line_coding->stop_bits));
|
|
cdch_serial_driver_t const *driver = &serial_drivers[p_cdc->serial_drid];
|
|
p_cdc->requested_line.coding = *line_coding;
|
|
p_cdc->user_complete_cb = complete_cb;
|
|
|
|
if (driver->set_line_coding) {
|
|
// driver support set_line_coding request
|
|
TU_VERIFY(driver->set_line_coding(p_cdc, complete_cb ? cdch_internal_control_complete : NULL, user_data));
|
|
|
|
if (!complete_cb) {
|
|
p_cdc->line.coding = *line_coding;
|
|
}
|
|
} else {
|
|
// driver does not support set_line_coding and need 2 stage to set baudrate and data format separately
|
|
if (complete_cb) {
|
|
// non-blocking
|
|
TU_VERIFY(driver->set_baudrate(p_cdc, cdch_set_line_coding_stage1_baudrate_complete, user_data));
|
|
} else {
|
|
// blocking
|
|
xfer_result_t result = XFER_RESULT_INVALID;
|
|
|
|
TU_VERIFY(driver->set_baudrate(p_cdc, NULL, (uintptr_t) &result));
|
|
if (user_data) {
|
|
*((xfer_result_t *) user_data) = result;
|
|
}
|
|
TU_VERIFY(result == XFER_RESULT_SUCCESS);
|
|
p_cdc->line.coding.bit_rate = p_cdc->requested_line.coding.bit_rate; // update baudrate
|
|
|
|
result = XFER_RESULT_INVALID;
|
|
TU_VERIFY(driver->set_data_format(p_cdc, NULL, (uintptr_t) &result));
|
|
if (user_data) {
|
|
*((xfer_result_t *) user_data) = result;
|
|
}
|
|
TU_VERIFY(result == XFER_RESULT_SUCCESS);
|
|
p_cdc->line.coding = p_cdc->requested_line.coding; // update data format
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// CLASS-USBH API
|
|
//--------------------------------------------------------------------+
|
|
|
|
bool cdch_init(void) {
|
|
TU_LOG_DRV("sizeof(cdch_interface_t) = %u\r\n", sizeof(cdch_interface_t));
|
|
tu_memclr(cdch_data, sizeof(cdch_data));
|
|
for (size_t i = 0; i < CFG_TUH_CDC; i++) {
|
|
cdch_interface_t *p_cdc = &cdch_data[i];
|
|
cdch_epbuf_t *epbuf = &cdch_epbuf[i];
|
|
tu_edpt_stream_init(&p_cdc->stream.tx, true, true, false,
|
|
p_cdc->stream.tx_ff_buf, CFG_TUH_CDC_TX_BUFSIZE,
|
|
epbuf->tx, CFG_TUH_CDC_TX_EPSIZE);
|
|
|
|
tu_edpt_stream_init(&p_cdc->stream.rx, true, false, false,
|
|
p_cdc->stream.rx_ff_buf, CFG_TUH_CDC_RX_BUFSIZE,
|
|
epbuf->rx, CFG_TUH_CDC_RX_EPSIZE);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool cdch_deinit(void) {
|
|
for (size_t i = 0; i < CFG_TUH_CDC; i++) {
|
|
cdch_interface_t *p_cdc = &cdch_data[i];
|
|
tu_edpt_stream_deinit(&p_cdc->stream.tx);
|
|
tu_edpt_stream_deinit(&p_cdc->stream.rx);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void cdch_close(uint8_t daddr) {
|
|
for (uint8_t idx = 0; idx < CFG_TUH_CDC; idx++) {
|
|
cdch_interface_t *p_cdc = &cdch_data[idx];
|
|
if (p_cdc->daddr == daddr) {
|
|
TU_LOG_CDC(p_cdc, "close");
|
|
|
|
// Invoke application callback
|
|
if (tuh_cdc_umount_cb) {
|
|
tuh_cdc_umount_cb(idx);
|
|
}
|
|
|
|
p_cdc->daddr = 0;
|
|
p_cdc->bInterfaceNumber = 0;
|
|
p_cdc->mounted = false;
|
|
tu_edpt_stream_close(&p_cdc->stream.tx);
|
|
tu_edpt_stream_close(&p_cdc->stream.rx);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool cdch_xfer_cb(uint8_t daddr, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes) {
|
|
// TODO handle stall response, retry failed transfer ...
|
|
TU_VERIFY(event == XFER_RESULT_SUCCESS);
|
|
|
|
uint8_t const idx = get_idx_by_ep_addr(daddr, ep_addr);
|
|
cdch_interface_t *p_cdc = get_itf(idx);
|
|
TU_ASSERT(p_cdc);
|
|
|
|
if (ep_addr == p_cdc->stream.tx.ep_addr) {
|
|
// invoke tx complete callback to possibly refill tx fifo
|
|
if (tuh_cdc_tx_complete_cb) {
|
|
tuh_cdc_tx_complete_cb(idx);
|
|
}
|
|
|
|
if (0 == tu_edpt_stream_write_xfer(daddr, &p_cdc->stream.tx)) {
|
|
// If there is no data left, a ZLP should be sent if:
|
|
// - xferred_bytes is multiple of EP Packet size and not zero
|
|
tu_edpt_stream_write_zlp_if_needed(daddr, &p_cdc->stream.tx, xferred_bytes);
|
|
}
|
|
} else if (ep_addr == p_cdc->stream.rx.ep_addr) {
|
|
#if CFG_TUH_CDC_FTDI
|
|
if (p_cdc->serial_drid == SERIAL_DRIVER_FTDI) {
|
|
// FTDI reserve 2 bytes for status
|
|
// uint8_t status[2] = {p_cdc->stream.rx.ep_buf[0], p_cdc->stream.rx.ep_buf[1]};
|
|
if (xferred_bytes > 2) {
|
|
tu_edpt_stream_read_xfer_complete_with_buf(&p_cdc->stream.rx, p_cdc->stream.rx.ep_buf + 2, xferred_bytes - 2);
|
|
|
|
if (tuh_cdc_rx_cb) {
|
|
tuh_cdc_rx_cb(idx); // invoke receive callback
|
|
}
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
tu_edpt_stream_read_xfer_complete(&p_cdc->stream.rx, xferred_bytes);
|
|
|
|
if (tuh_cdc_rx_cb) {
|
|
tuh_cdc_rx_cb(idx); // invoke receive callback
|
|
}
|
|
}
|
|
|
|
// prepare for next transfer if needed
|
|
tu_edpt_stream_read_xfer(daddr, &p_cdc->stream.rx);
|
|
} else if (ep_addr == p_cdc->ep_notif) {
|
|
// TODO handle notification endpoint
|
|
} else {
|
|
TU_ASSERT(false);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// Enumeration
|
|
//--------------------------------------------------------------------+
|
|
|
|
static bool open_ep_stream_pair(cdch_interface_t *p_cdc, tusb_desc_endpoint_t const *desc_ep) {
|
|
for (size_t i = 0; i < 2; i++) {
|
|
TU_ASSERT(TUSB_DESC_ENDPOINT == desc_ep->bDescriptorType &&
|
|
TUSB_XFER_BULK == desc_ep->bmAttributes.xfer);
|
|
TU_ASSERT(tuh_edpt_open(p_cdc->daddr, desc_ep));
|
|
|
|
if (tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN) {
|
|
tu_edpt_stream_open(&p_cdc->stream.rx, desc_ep);
|
|
} else {
|
|
tu_edpt_stream_open(&p_cdc->stream.tx, desc_ep);
|
|
}
|
|
|
|
desc_ep = (tusb_desc_endpoint_t const *) tu_desc_next(desc_ep);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool cdch_open(uint8_t rhport, uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len) {
|
|
(void) rhport;
|
|
// For CDC: only support ACM subclass
|
|
// Note: Protocol 0xFF can be RNDIS device
|
|
if (TUSB_CLASS_CDC == itf_desc->bInterfaceClass &&
|
|
CDC_COMM_SUBCLASS_ABSTRACT_CONTROL_MODEL == itf_desc->bInterfaceSubClass) {
|
|
return acm_open(daddr, itf_desc, max_len);
|
|
} else if (SERIAL_DRIVER_COUNT > 1 &&
|
|
TUSB_CLASS_VENDOR_SPECIFIC == itf_desc->bInterfaceClass) {
|
|
uint16_t vid, pid;
|
|
TU_VERIFY(tuh_vid_pid_get(daddr, &vid, &pid));
|
|
|
|
for (size_t dr = 1; dr < SERIAL_DRIVER_COUNT; dr++) {
|
|
const cdch_serial_driver_t *driver = &serial_drivers[dr];
|
|
for (size_t i = 0; i < driver->vid_pid_count; i++) {
|
|
if (driver->vid_pid_list[i][0] == vid && driver->vid_pid_list[i][1] == pid) {
|
|
const bool ret = driver->open(daddr, itf_desc, max_len);
|
|
TU_LOG_DRV("[:%u:%u] CDCh %s open %s\r\n", daddr, itf_desc->bInterfaceNumber, driver->name, ret ? "OK" : "FAILED");
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool cdch_set_config(uint8_t daddr, uint8_t itf_num) {
|
|
tusb_control_request_t request;
|
|
request.wIndex = tu_htole16((uint16_t) itf_num);
|
|
uint8_t const idx = tuh_cdc_itf_get_index(daddr, itf_num);
|
|
cdch_interface_t *p_cdc = get_itf(idx);
|
|
TU_ASSERT(p_cdc && p_cdc->serial_drid < SERIAL_DRIVER_COUNT);
|
|
TU_LOG_CDC(p_cdc, "set config");
|
|
|
|
// fake transfer to kick-off process_set_config()
|
|
tuh_xfer_t xfer;
|
|
xfer.daddr = daddr;
|
|
xfer.result = XFER_RESULT_SUCCESS;
|
|
xfer.setup = &request;
|
|
xfer.user_data = 0; // initial state 0
|
|
cdch_process_set_config(&xfer);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void set_config_complete(cdch_interface_t *p_cdc, bool success) {
|
|
if (success) {
|
|
const uint8_t idx = get_idx_by_ptr(p_cdc);
|
|
p_cdc->mounted = true;
|
|
if (tuh_cdc_mount_cb) {
|
|
tuh_cdc_mount_cb(idx);
|
|
}
|
|
// Prepare for incoming data
|
|
tu_edpt_stream_read_xfer(p_cdc->daddr, &p_cdc->stream.rx);
|
|
} else {
|
|
// clear the interface entry
|
|
p_cdc->daddr = 0;
|
|
p_cdc->bInterfaceNumber = 0;
|
|
}
|
|
|
|
// notify usbh that driver enumeration is complete
|
|
const uint8_t itf_offset = (p_cdc->serial_drid == SERIAL_DRIVER_ACM) ? 1 : 0;
|
|
usbh_driver_set_config_complete(p_cdc->daddr, p_cdc->bInterfaceNumber + itf_offset);
|
|
}
|
|
|
|
static void cdch_process_set_config(tuh_xfer_t *xfer) {
|
|
cdch_interface_t *p_cdc = get_itf_by_xfer(xfer);
|
|
TU_ASSERT(p_cdc && p_cdc->serial_drid < SERIAL_DRIVER_COUNT,);
|
|
TU_LOG_DRV(" state = %u\r\n", xfer->user_data);
|
|
const cdch_serial_driver_t *driver = &serial_drivers[p_cdc->serial_drid];
|
|
|
|
if (!driver->process_set_config(p_cdc, xfer)) {
|
|
set_config_complete(p_cdc, false);
|
|
}
|
|
}
|
|
|
|
static bool set_line_state_on_enum(cdch_interface_t *p_cdc, tuh_xfer_t *xfer) {
|
|
enum {
|
|
ENUM_SET_LINE_CODING = 0,
|
|
ENUM_SET_LINE_CONTROL,
|
|
ENUM_SET_LINE_COMPLETE,
|
|
};
|
|
const uint8_t idx = get_idx_by_ptr(p_cdc);
|
|
const uintptr_t state = xfer->user_data;
|
|
|
|
switch (state) {
|
|
case ENUM_SET_LINE_CODING: {
|
|
#ifdef CFG_TUH_CDC_LINE_CODING_ON_ENUM
|
|
// ch34x already set line coding in serial init
|
|
if (p_cdc->serial_drid != SERIAL_DRIVER_CH34X) {
|
|
const cdc_line_coding_t line_coding = (cdc_line_coding_t) CFG_TUH_CDC_LINE_CODING_ON_ENUM;
|
|
TU_ASSERT(tuh_cdc_set_line_coding(idx, &line_coding,
|
|
cdch_process_line_state_on_enum, ENUM_SET_LINE_CONTROL));
|
|
break;
|
|
}
|
|
#endif
|
|
TU_ATTR_FALLTHROUGH;
|
|
}
|
|
|
|
case ENUM_SET_LINE_CONTROL:
|
|
#ifdef CFG_TUH_CDC_LINE_CONTROL_ON_ENUM
|
|
TU_ASSERT(tuh_cdc_set_control_line_state(idx, CFG_TUH_CDC_LINE_CONTROL_ON_ENUM,
|
|
cdch_process_line_state_on_enum, ENUM_SET_LINE_COMPLETE));
|
|
break;
|
|
#else
|
|
TU_ATTR_FALLTHROUGH;
|
|
#endif
|
|
|
|
case ENUM_SET_LINE_COMPLETE:
|
|
set_config_complete(p_cdc, true);
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void cdch_process_line_state_on_enum(tuh_xfer_t *xfer) {
|
|
cdch_interface_t *p_cdc = get_itf_by_xfer(xfer);
|
|
TU_ASSERT(p_cdc && p_cdc->serial_drid < SERIAL_DRIVER_COUNT,);
|
|
if (xfer->result != XFER_RESULT_SUCCESS || !set_line_state_on_enum(p_cdc, xfer)) {
|
|
set_config_complete(p_cdc, false);
|
|
}
|
|
}
|
|
|
|
|
|
static void cdch_internal_control_complete(tuh_xfer_t *xfer) {
|
|
cdch_interface_t *p_cdc = get_itf_by_xfer(xfer);
|
|
TU_ASSERT(p_cdc && p_cdc->serial_drid < SERIAL_DRIVER_COUNT,);
|
|
TU_LOG_DRV(" request result = %u\r\n", xfer->result);
|
|
const cdch_serial_driver_t *driver = &serial_drivers[p_cdc->serial_drid];
|
|
driver->request_complete(p_cdc, xfer);
|
|
|
|
// Invoke application callback
|
|
xfer->complete_cb = p_cdc->user_complete_cb;
|
|
if (xfer->complete_cb) {
|
|
xfer->complete_cb(xfer);
|
|
}
|
|
}
|
|
|
|
static void cdch_set_line_coding_stage1_baudrate_complete(tuh_xfer_t *xfer) {
|
|
cdch_interface_t *p_cdc = get_itf_by_xfer(xfer);
|
|
TU_ASSERT(p_cdc && p_cdc->serial_drid < SERIAL_DRIVER_COUNT,);
|
|
TU_LOG_DRV(" stage1 set baudrate result = %u\r\n", xfer->result);
|
|
const cdch_serial_driver_t *driver = &serial_drivers[p_cdc->serial_drid];
|
|
|
|
if (xfer->result == XFER_RESULT_SUCCESS) {
|
|
p_cdc->line.coding.bit_rate = p_cdc->requested_line.coding.bit_rate; // update baudrate
|
|
TU_ASSERT(driver->set_data_format(p_cdc, cdch_set_line_coding_stage2_data_format_complete, xfer->user_data),);
|
|
} else {
|
|
xfer->complete_cb = p_cdc->user_complete_cb;
|
|
if (xfer->complete_cb) {
|
|
xfer->complete_cb(xfer);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void cdch_set_line_coding_stage2_data_format_complete(tuh_xfer_t *xfer) {
|
|
cdch_interface_t *p_cdc = get_itf_by_xfer(xfer);
|
|
TU_ASSERT(p_cdc && p_cdc->serial_drid < SERIAL_DRIVER_COUNT,);
|
|
TU_LOG_DRV(" stage2 set data format result = %u\r\n", xfer->result);
|
|
|
|
if (xfer->result == XFER_RESULT_SUCCESS) {
|
|
p_cdc->line.coding = p_cdc->requested_line.coding; // update data format
|
|
}
|
|
|
|
xfer->complete_cb = p_cdc->user_complete_cb;
|
|
if (xfer->complete_cb) {
|
|
xfer->complete_cb(xfer);
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// ACM
|
|
//--------------------------------------------------------------------+
|
|
|
|
// internal control complete to update state such as line state, encoding
|
|
static void acm_internal_control_complete(cdch_interface_t *p_cdc, tuh_xfer_t *xfer) {
|
|
TU_VERIFY (xfer->result == XFER_RESULT_SUCCESS,);
|
|
const tusb_control_request_t * setup = xfer->setup;
|
|
|
|
switch (setup->bRequest) {
|
|
case CDC_REQUEST_SET_CONTROL_LINE_STATE:
|
|
p_cdc->line.control_state = p_cdc->requested_line.control_state;
|
|
break;
|
|
|
|
case CDC_REQUEST_SET_LINE_CODING:
|
|
p_cdc->line.coding = p_cdc->requested_line.coding;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool acm_set_control_line_state(cdch_interface_t *p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
TU_VERIFY(p_cdc->acm.capability.support_line_request);
|
|
|
|
const tusb_control_request_t request = {
|
|
.bmRequestType_bit = {
|
|
.recipient = TUSB_REQ_RCPT_INTERFACE,
|
|
.type = TUSB_REQ_TYPE_CLASS,
|
|
.direction = TUSB_DIR_OUT
|
|
},
|
|
.bRequest = CDC_REQUEST_SET_CONTROL_LINE_STATE,
|
|
.wValue = tu_htole16((uint16_t) p_cdc->requested_line.control_state.value),
|
|
.wIndex = tu_htole16((uint16_t) p_cdc->bInterfaceNumber),
|
|
.wLength = 0
|
|
};
|
|
|
|
tuh_xfer_t xfer = {
|
|
.daddr = p_cdc->daddr,
|
|
.ep_addr = 0,
|
|
.setup = &request,
|
|
.buffer = NULL,
|
|
.complete_cb = complete_cb,
|
|
.user_data = user_data
|
|
};
|
|
|
|
return tuh_control_xfer(&xfer);
|
|
}
|
|
|
|
static bool acm_set_line_coding(cdch_interface_t *p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
TU_VERIFY(p_cdc->acm.capability.support_line_request);
|
|
TU_VERIFY((p_cdc->requested_line.coding.data_bits >= 5 && p_cdc->requested_line.coding.data_bits <= 8) ||
|
|
p_cdc->requested_line.coding.data_bits == 16);
|
|
|
|
tusb_control_request_t const request = {
|
|
.bmRequestType_bit = {
|
|
.recipient = TUSB_REQ_RCPT_INTERFACE,
|
|
.type = TUSB_REQ_TYPE_CLASS,
|
|
.direction = TUSB_DIR_OUT
|
|
},
|
|
.bRequest = CDC_REQUEST_SET_LINE_CODING,
|
|
.wValue = 0,
|
|
.wIndex = tu_htole16((uint16_t) p_cdc->bInterfaceNumber),
|
|
.wLength = tu_htole16((uint16_t) sizeof(cdc_line_coding_t))
|
|
};
|
|
|
|
// use usbh enum buf to hold line coding since user line_coding variable does not live long enough
|
|
uint8_t *enum_buf = usbh_get_enum_buf();
|
|
memcpy(enum_buf, &p_cdc->requested_line.coding, sizeof(cdc_line_coding_t));
|
|
|
|
tuh_xfer_t xfer = {
|
|
.daddr = p_cdc->daddr,
|
|
.ep_addr = 0,
|
|
.setup = &request,
|
|
.buffer = enum_buf,
|
|
.complete_cb = complete_cb,
|
|
.user_data = user_data
|
|
};
|
|
|
|
return tuh_control_xfer(&xfer);
|
|
}
|
|
|
|
//------------- Enumeration -------------//
|
|
enum {
|
|
CONFIG_ACM_COMPLETE = 0
|
|
};
|
|
|
|
static bool acm_open(uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len) {
|
|
uint8_t const *p_desc_end = ((uint8_t const *) itf_desc) + max_len;
|
|
|
|
cdch_interface_t *p_cdc = make_new_itf(daddr, itf_desc);
|
|
TU_VERIFY(p_cdc);
|
|
|
|
p_cdc->serial_drid = SERIAL_DRIVER_ACM;
|
|
|
|
//------------- Control Interface -------------//
|
|
uint8_t const *p_desc = tu_desc_next(itf_desc);
|
|
|
|
// Communication Functional Descriptors
|
|
while ((p_desc < p_desc_end) && (TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc))) {
|
|
if (CDC_FUNC_DESC_ABSTRACT_CONTROL_MANAGEMENT == cdc_functional_desc_typeof(p_desc)) {
|
|
// save ACM bmCapabilities
|
|
p_cdc->acm.capability = ((cdc_desc_func_acm_t const *) p_desc)->bmCapabilities;
|
|
}
|
|
|
|
p_desc = tu_desc_next(p_desc);
|
|
}
|
|
|
|
// Open notification endpoint of control interface if any
|
|
if (itf_desc->bNumEndpoints == 1) {
|
|
TU_ASSERT(TUSB_DESC_ENDPOINT == tu_desc_type(p_desc));
|
|
tusb_desc_endpoint_t const *desc_ep = (tusb_desc_endpoint_t const *) p_desc;
|
|
|
|
TU_ASSERT(tuh_edpt_open(daddr, desc_ep));
|
|
p_cdc->ep_notif = desc_ep->bEndpointAddress;
|
|
|
|
p_desc = tu_desc_next(p_desc);
|
|
}
|
|
|
|
//------------- Data Interface (if any) -------------//
|
|
if ((TUSB_DESC_INTERFACE == tu_desc_type(p_desc)) &&
|
|
(TUSB_CLASS_CDC_DATA == ((tusb_desc_interface_t const *) p_desc)->bInterfaceClass)) {
|
|
// next to endpoint descriptor
|
|
p_desc = tu_desc_next(p_desc);
|
|
|
|
// data endpoints expected to be in pairs
|
|
TU_ASSERT(open_ep_stream_pair(p_cdc, (tusb_desc_endpoint_t const *) p_desc));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool acm_process_set_config(cdch_interface_t *p_cdc, tuh_xfer_t *xfer) {
|
|
TU_ASSERT(xfer->result == XFER_RESULT_SUCCESS);
|
|
(void) p_cdc;
|
|
const uintptr_t state = xfer->user_data;
|
|
|
|
switch (state) {
|
|
case CONFIG_ACM_COMPLETE: {
|
|
xfer->user_data = 0; // kick-off set line state on enum
|
|
cdch_process_line_state_on_enum(xfer);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return false; // invalid state
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//--------------------------------------------------------------------+
|
|
// FTDI
|
|
//--------------------------------------------------------------------+
|
|
#if CFG_TUH_CDC_FTDI
|
|
|
|
static bool ftdi_determine_type(cdch_interface_t *p_cdc);
|
|
static uint32_t ftdi_get_divisor(cdch_interface_t *p_cdc);
|
|
|
|
//------------- Control Request -------------//
|
|
|
|
// set request without data
|
|
static bool ftdi_set_request(cdch_interface_t *p_cdc, uint8_t request, uint8_t requesttype,
|
|
uint16_t value, uint16_t index, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
tusb_control_request_t const request_setup = {
|
|
.bmRequestType = requesttype,
|
|
.bRequest = request,
|
|
.wValue = tu_htole16(value),
|
|
.wIndex = tu_htole16(index),
|
|
.wLength = 0
|
|
};
|
|
|
|
tuh_xfer_t xfer = {
|
|
.daddr = p_cdc->daddr,
|
|
.ep_addr = 0,
|
|
.setup = &request_setup,
|
|
.buffer = NULL,
|
|
.complete_cb = complete_cb,
|
|
.user_data = user_data
|
|
};
|
|
|
|
return tuh_control_xfer(&xfer);
|
|
}
|
|
|
|
#ifdef CFG_TUH_CDC_FTDI_LATENCY
|
|
static int8_t ftdi_write_latency_timer(cdch_interface_t * p_cdc, uint16_t latency,
|
|
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
if (p_cdc->ftdi.chip_type == FTDI_SIO /* || p_cdc->ftdi.chip_type == FT232A */ )
|
|
return FTDI_NOT_POSSIBLE;
|
|
return ftdi_set_request(p_cdc, FTDI_SIO_SET_LATENCY_TIMER_REQUEST, FTDI_SIO_SET_LATENCY_TIMER_REQUEST_TYPE,
|
|
latency, p_cdc->ftdi.channel, complete_cb, user_data) ? FTDI_REQUESTED : FTDI_FAIL;
|
|
}
|
|
#endif
|
|
|
|
static inline bool ftdi_sio_reset(cdch_interface_t *p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
return ftdi_set_request(p_cdc, FTDI_SIO_RESET_REQUEST, FTDI_SIO_RESET_REQUEST_TYPE, FTDI_SIO_RESET_SIO,
|
|
p_cdc->ftdi.channel, complete_cb, user_data);
|
|
}
|
|
|
|
|
|
//------------- Driver API -------------//
|
|
|
|
// internal control complete to update state such as line state, line_coding
|
|
static void ftdi_internal_control_complete(cdch_interface_t* p_cdc, tuh_xfer_t *xfer) {
|
|
TU_VERIFY(xfer->result == XFER_RESULT_SUCCESS,);
|
|
const tusb_control_request_t * setup = xfer->setup;
|
|
if (xfer->result == XFER_RESULT_SUCCESS) {
|
|
if (setup->bRequest == FTDI_SIO_SET_MODEM_CTRL_REQUEST &&
|
|
setup->bmRequestType == FTDI_SIO_SET_MODEM_CTRL_REQUEST_TYPE ) {
|
|
p_cdc->line.control_state = p_cdc->requested_line.control_state;
|
|
}
|
|
if (setup->bRequest == FTDI_SIO_SET_DATA_REQUEST &&
|
|
setup->bmRequestType == FTDI_SIO_SET_DATA_REQUEST_TYPE ) {
|
|
p_cdc->line.coding.stop_bits = p_cdc->requested_line.coding.stop_bits;
|
|
p_cdc->line.coding.parity = p_cdc->requested_line.coding.parity;
|
|
p_cdc->line.coding.data_bits = p_cdc->requested_line.coding.data_bits;
|
|
}
|
|
if (setup->bRequest == FTDI_SIO_SET_BAUDRATE_REQUEST &&
|
|
setup->bmRequestType == FTDI_SIO_SET_BAUDRATE_REQUEST_TYPE ) {
|
|
p_cdc->line.coding.bit_rate = p_cdc->requested_line.coding.bit_rate;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool ftdi_set_data_format(cdch_interface_t *p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
TU_VERIFY(p_cdc->requested_line.coding.data_bits >= 7 && p_cdc->requested_line.coding.data_bits <= 8, 0);
|
|
uint16_t value = (uint16_t) ((p_cdc->requested_line.coding.data_bits & 0xfUL) | // data bit quantity is stored in bits 0-3
|
|
(p_cdc->requested_line.coding.parity & 0x7UL) << 8 | // parity is stored in bits 8-10, same coding
|
|
(p_cdc->requested_line.coding.stop_bits & 0x3UL) << 11); // stop bits quantity is stored in bits 11-12, same coding
|
|
// not each FTDI supports 1.5 stop bits
|
|
return ftdi_set_request(p_cdc, FTDI_SIO_SET_DATA_REQUEST, FTDI_SIO_SET_DATA_REQUEST_TYPE,
|
|
value, p_cdc->ftdi.channel, complete_cb, user_data);
|
|
}
|
|
|
|
static bool ftdi_set_baudrate(cdch_interface_t *p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
uint32_t index_value = ftdi_get_divisor(p_cdc);
|
|
TU_VERIFY(index_value);
|
|
uint16_t value = (uint16_t) index_value;
|
|
uint16_t index = (uint16_t) (index_value >> 16);
|
|
if (p_cdc->ftdi.channel) {
|
|
index = (uint16_t) ((index << 8) | p_cdc->ftdi.channel);
|
|
}
|
|
|
|
return ftdi_set_request(p_cdc, FTDI_SIO_SET_BAUDRATE_REQUEST, FTDI_SIO_SET_BAUDRATE_REQUEST_TYPE,
|
|
value, index, complete_cb, user_data);
|
|
}
|
|
|
|
static bool ftdi_set_modem_ctrl(cdch_interface_t *p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
uint16_t line_state = (uint16_t) ((p_cdc->requested_line.control_state.dtr ? FTDI_SIO_SET_DTR_HIGH : FTDI_SIO_SET_DTR_LOW) |
|
|
(p_cdc->requested_line.control_state.rts ? FTDI_SIO_SET_RTS_HIGH : FTDI_SIO_SET_RTS_LOW));
|
|
return ftdi_set_request(p_cdc, FTDI_SIO_SET_MODEM_CTRL_REQUEST, FTDI_SIO_SET_MODEM_CTRL_REQUEST_TYPE,
|
|
line_state, p_cdc->ftdi.channel, complete_cb ? cdch_internal_control_complete : NULL, user_data);
|
|
}
|
|
|
|
//------------- Enumeration -------------//
|
|
enum {
|
|
CONFIG_FTDI_DETERMINE_TYPE = 0,
|
|
CONFIG_FTDI_WRITE_LATENCY,
|
|
CONFIG_FTDI_SIO_RESET,
|
|
CONFIG_FTDI_FLOW_CONTROL,
|
|
CONFIG_FTDI_COMPLETE
|
|
};
|
|
|
|
static bool ftdi_open(uint8_t daddr, const tusb_desc_interface_t *itf_desc, uint16_t max_len) {
|
|
// FTDI Interface includes 1 vendor interface + 2 bulk endpoints
|
|
TU_VERIFY(itf_desc->bInterfaceSubClass == 0xff && itf_desc->bInterfaceProtocol == 0xff &&
|
|
itf_desc->bNumEndpoints == 2);
|
|
TU_VERIFY(sizeof(tusb_desc_interface_t) + 2 * sizeof(tusb_desc_endpoint_t) <= max_len);
|
|
|
|
cdch_interface_t *p_cdc = make_new_itf(daddr, itf_desc);
|
|
TU_VERIFY(p_cdc);
|
|
|
|
p_cdc->serial_drid = SERIAL_DRIVER_FTDI;
|
|
|
|
// endpoint pair
|
|
tusb_desc_endpoint_t const *desc_ep = (tusb_desc_endpoint_t const *) tu_desc_next(itf_desc);
|
|
|
|
/*
|
|
* NOTE: Some customers have programmed FT232R/FT245R devices
|
|
* with an endpoint size of 0 - not good.
|
|
*/
|
|
TU_ASSERT(desc_ep->wMaxPacketSize != 0);
|
|
|
|
// data endpoints expected to be in pairs
|
|
return open_ep_stream_pair(p_cdc, desc_ep);
|
|
}
|
|
|
|
static bool ftdi_proccess_set_config(cdch_interface_t *p_cdc, tuh_xfer_t *xfer) {
|
|
TU_ASSERT(xfer->result == XFER_RESULT_SUCCESS);
|
|
const uintptr_t state = xfer->user_data;
|
|
switch (state) {
|
|
// from here sequence overtaken from Linux Kernel function ftdi_port_probe()
|
|
case CONFIG_FTDI_DETERMINE_TYPE:
|
|
// determine type
|
|
if (p_cdc->bInterfaceNumber == 0) {
|
|
TU_ASSERT(ftdi_determine_type(p_cdc));
|
|
} else {
|
|
// other interfaces have same type as interface 0
|
|
uint8_t const idx_itf0 = tuh_cdc_itf_get_index(xfer->daddr, 0);
|
|
cdch_interface_t const *p_cdc_itf0 = get_itf(idx_itf0);
|
|
TU_ASSERT(p_cdc_itf0);
|
|
p_cdc->ftdi.chip_type = p_cdc_itf0->ftdi.chip_type;
|
|
}
|
|
TU_ATTR_FALLTHROUGH;
|
|
|
|
case CONFIG_FTDI_WRITE_LATENCY:
|
|
#ifdef CFG_TUH_CDC_FTDI_LATENCY
|
|
int8_t result = ftdi_write_latency_timer(p_cdc, CFG_TUH_CDC_FTDI_LATENCY, ftdi_process_config,
|
|
CONFIG_FTDI_SIO_RESET);
|
|
TU_ASSERT(result != FTDI_FAIL);
|
|
if (result == FTDI_REQUESTED) {
|
|
break;
|
|
}// else FTDI_NOT_POSSIBLE => continue directly with next state
|
|
#endif
|
|
TU_ATTR_FALLTHROUGH;
|
|
|
|
// from here sequence overtaken from Linux Kernel function ftdi_open()
|
|
case CONFIG_FTDI_SIO_RESET:
|
|
TU_ASSERT(ftdi_sio_reset(p_cdc, cdch_process_set_config, CONFIG_FTDI_FLOW_CONTROL));
|
|
break;
|
|
|
|
case CONFIG_FTDI_FLOW_CONTROL:
|
|
// disable flow control
|
|
TU_ASSERT(ftdi_set_request(p_cdc, FTDI_SIO_SET_FLOW_CTRL_REQUEST, FTDI_SIO_SET_FLOW_CTRL_REQUEST_TYPE, FTDI_SIO_DISABLE_FLOW_CTRL,
|
|
p_cdc->ftdi.channel, cdch_process_set_config, CONFIG_FTDI_COMPLETE));
|
|
break;
|
|
|
|
case CONFIG_FTDI_COMPLETE: {
|
|
xfer->user_data = 0; // kick-off set line state on enum
|
|
cdch_process_line_state_on_enum(xfer);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//------------- Helper -------------//
|
|
|
|
static bool ftdi_determine_type(cdch_interface_t *p_cdc) {
|
|
tusb_desc_device_t desc_dev;
|
|
TU_VERIFY(tuh_descriptor_get_device_local(p_cdc->daddr, &desc_dev));
|
|
uint16_t const version = desc_dev.bcdDevice;
|
|
uint8_t const itf_num = p_cdc->bInterfaceNumber;
|
|
|
|
p_cdc->ftdi.chip_type = FTDI_UNKNOWN;
|
|
|
|
/* Assume Hi-Speed type */
|
|
p_cdc->ftdi.channel = CHANNEL_A + itf_num;
|
|
|
|
switch (version) {
|
|
case 0x200:
|
|
// FT232A not supported to keep it simple (no extra _read_latency_timer()) not testable
|
|
// p_cdc->ftdi.chip_type = FT232A;
|
|
// p_cdc->ftdi.baud_base = 48000000 / 2;
|
|
// p_cdc->ftdi.channel = 0;
|
|
// /*
|
|
// * FT232B devices have a bug where bcdDevice gets set to 0x200
|
|
// * when iSerialNumber is 0. Assume it is an FT232B in case the
|
|
// * latency timer is readable.
|
|
// */
|
|
// if (desc->iSerialNumber == 0 &&
|
|
// _read_latency_timer(port) >= 0) {
|
|
// p_cdc->ftdi.chip_type = FTDI_FT232B;
|
|
// }
|
|
break;
|
|
|
|
case 0x400 : p_cdc->ftdi.chip_type = FTDI_FT232B; p_cdc->ftdi.channel = 0; break;
|
|
case 0x500 : p_cdc->ftdi.chip_type = FTDI_FT2232C; break;
|
|
case 0x600 : p_cdc->ftdi.chip_type = FTDI_FT232R; p_cdc->ftdi.channel = 0; break;
|
|
case 0x700 : p_cdc->ftdi.chip_type = FTDI_FT2232H; break;
|
|
case 0x800 : p_cdc->ftdi.chip_type = FTDI_FT4232H; break;
|
|
case 0x900 : p_cdc->ftdi.chip_type = FTDI_FT232H; break;
|
|
case 0x1000: p_cdc->ftdi.chip_type = FTDI_FTX; break;
|
|
case 0x2800: p_cdc->ftdi.chip_type = FTDI_FT2233HP; break;
|
|
case 0x2900: p_cdc->ftdi.chip_type = FTDI_FT4233HP; break;
|
|
case 0x3000: p_cdc->ftdi.chip_type = FTDI_FT2232HP; break;
|
|
case 0x3100: p_cdc->ftdi.chip_type = FTDI_FT4232HP; break;
|
|
case 0x3200: p_cdc->ftdi.chip_type = FTDI_FT233HP; break;
|
|
case 0x3300: p_cdc->ftdi.chip_type = FTDI_FT232HP; break;
|
|
case 0x3600: p_cdc->ftdi.chip_type = FTDI_FT4232HA; break;
|
|
|
|
default:
|
|
if (version < 0x200) {
|
|
p_cdc->ftdi.chip_type = FTDI_SIO;
|
|
p_cdc->ftdi.channel = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
#if CFG_TUSB_DEBUG >= CFG_TUH_CDC_LOG_LEVEL
|
|
const char * ftdi_chip_name[] = { FTDI_CHIP_NAMES };
|
|
TU_LOG_CDC(p_cdc, "%s detected (bcdDevice = 0x%04x)",
|
|
ftdi_chip_name[p_cdc->ftdi.chip_type], version);
|
|
#endif
|
|
|
|
return (p_cdc->ftdi.chip_type != FTDI_UNKNOWN);
|
|
}
|
|
|
|
// FT232A not supported
|
|
//static uint32_t ftdi_232am_baud_base_to_divisor(uint32_t baud, uint32_t base)
|
|
//{
|
|
// uint32_t divisor;
|
|
// /* divisor shifted 3 bits to the left */
|
|
// uint32_t divisor3 = DIV_ROUND_CLOSEST(base, 2 * baud);
|
|
// if ((divisor3 & 0x7) == 7)
|
|
// divisor3++; /* round x.7/8 up to x+1 */
|
|
// divisor = divisor3 >> 3;
|
|
// divisor3 &= 0x7;
|
|
// if (divisor3 == 1)
|
|
// divisor |= 0xc000; /* +0.125 */
|
|
// else if (divisor3 >= 4)
|
|
// divisor |= 0x4000; /* +0.5 */
|
|
// else if (divisor3 != 0)
|
|
// divisor |= 0x8000; /* +0.25 */
|
|
// else if (divisor == 1)
|
|
// divisor = 0; /* special case for maximum baud rate */
|
|
// return divisor;
|
|
//}
|
|
|
|
// FT232A not supported
|
|
//static inline uint32_t ftdi_232am_baud_to_divisor(uint32_t baud)
|
|
//{
|
|
// return ftdi_232am_baud_base_to_divisor(baud, (uint32_t) 48000000);
|
|
//}
|
|
|
|
static uint32_t ftdi_232bm_baud_base_to_divisor(uint32_t baud, uint32_t base) {
|
|
uint8_t divfrac[8] = {0, 3, 2, 4, 1, 5, 6, 7};
|
|
uint32_t divisor;
|
|
/* divisor shifted 3 bits to the left */
|
|
uint32_t divisor3 = DIV_ROUND_CLOSEST(base, 2 * baud);
|
|
divisor = divisor3 >> 3;
|
|
divisor |= (uint32_t) divfrac[divisor3 & 0x7] << 14;
|
|
/* Deal with special cases for highest baud rates. */
|
|
if (divisor == 1) /* 1.0 */ {
|
|
divisor = 0;
|
|
} else if (divisor == 0x4001) /* 1.5 */ {
|
|
divisor = 1;
|
|
}
|
|
return divisor;
|
|
}
|
|
|
|
static inline uint32_t ftdi_232bm_baud_to_divisor(uint32_t baud) {
|
|
return ftdi_232bm_baud_base_to_divisor(baud, 48000000);
|
|
}
|
|
|
|
static uint32_t ftdi_2232h_baud_base_to_divisor(uint32_t baud, uint32_t base) {
|
|
static const unsigned char divfrac[8] = {0, 3, 2, 4, 1, 5, 6, 7};
|
|
uint32_t divisor;
|
|
uint32_t divisor3;
|
|
|
|
/* hi-speed baud rate is 10-bit sampling instead of 16-bit */
|
|
divisor3 = DIV_ROUND_CLOSEST(8 * base, 10 * baud);
|
|
|
|
divisor = divisor3 >> 3;
|
|
divisor |= (uint32_t) divfrac[divisor3 & 0x7] << 14;
|
|
/* Deal with special cases for highest baud rates. */
|
|
if (divisor == 1) /* 1.0 */ {
|
|
divisor = 0;
|
|
} else if (divisor == 0x4001) /* 1.5 */ {
|
|
divisor = 1;
|
|
}
|
|
/*
|
|
* Set this bit to turn off a divide by 2.5 on baud rate generator
|
|
* This enables baud rates up to 12Mbaud but cannot reach below 1200
|
|
* baud with this bit set
|
|
*/
|
|
divisor |= 0x00020000;
|
|
return divisor;
|
|
}
|
|
|
|
static inline uint32_t ftdi_2232h_baud_to_divisor(uint32_t baud) {
|
|
return ftdi_2232h_baud_base_to_divisor(baud, (uint32_t) 120000000);
|
|
}
|
|
|
|
static inline uint32_t ftdi_get_divisor(cdch_interface_t *p_cdc) {
|
|
uint32_t baud = p_cdc->requested_line.coding.bit_rate;
|
|
uint32_t div_value = 0;
|
|
TU_VERIFY(baud);
|
|
|
|
switch (p_cdc->ftdi.chip_type) {
|
|
case FTDI_UNKNOWN:
|
|
return 0;
|
|
case FTDI_SIO:
|
|
switch (baud) {
|
|
case 300: div_value = ftdi_sio_b300; break;
|
|
case 600: div_value = ftdi_sio_b600; break;
|
|
case 1200: div_value = ftdi_sio_b1200; break;
|
|
case 2400: div_value = ftdi_sio_b2400; break;
|
|
case 4800: div_value = ftdi_sio_b4800; break;
|
|
case 9600: div_value = ftdi_sio_b9600; break;
|
|
case 19200: div_value = ftdi_sio_b19200; break;
|
|
case 38400: div_value = ftdi_sio_b38400; break;
|
|
case 57600: div_value = ftdi_sio_b57600; break;
|
|
case 115200: div_value = ftdi_sio_b115200; break;
|
|
default:
|
|
// Baudrate not supported
|
|
return 0;
|
|
break;
|
|
}
|
|
break;
|
|
// FT232A not supported
|
|
// case FT232A:
|
|
// if (baud <= 3000000) {
|
|
// div_value = ftdi_232am_baud_to_divisor(baud);
|
|
// } else {
|
|
// // Baud rate too high!
|
|
// baud = 9600;
|
|
// div_value = ftdi_232am_baud_to_divisor(9600);
|
|
// div_okay = false;
|
|
// }
|
|
// break;
|
|
case FTDI_FT232B:
|
|
case FTDI_FT2232C:
|
|
case FTDI_FT232R:
|
|
case FTDI_FTX:
|
|
TU_VERIFY(baud <= 3000000); // else Baud rate too high!
|
|
div_value = ftdi_232bm_baud_to_divisor(baud);
|
|
break;
|
|
case FTDI_FT232H:
|
|
case FTDI_FT2232H:
|
|
case FTDI_FT4232H:
|
|
case FTDI_FT4232HA:
|
|
case FTDI_FT232HP:
|
|
case FTDI_FT233HP:
|
|
case FTDI_FT2232HP:
|
|
case FTDI_FT2233HP:
|
|
case FTDI_FT4232HP:
|
|
case FTDI_FT4233HP:
|
|
default:
|
|
TU_VERIFY(baud <= 12000000); // else Baud rate too high!
|
|
if (baud >= 1200) {
|
|
div_value = ftdi_2232h_baud_to_divisor(baud);
|
|
} else {
|
|
div_value = ftdi_232bm_baud_to_divisor(baud);
|
|
}
|
|
break;
|
|
}
|
|
|
|
TU_LOG_CDC(p_cdc, "Baudrate divisor = 0x%lu", div_value);
|
|
|
|
return div_value;
|
|
}
|
|
|
|
#endif
|
|
|
|
//--------------------------------------------------------------------+
|
|
// CP210x
|
|
//--------------------------------------------------------------------+
|
|
#if CFG_TUH_CDC_CP210X
|
|
|
|
//------------- Control Request -------------//
|
|
|
|
static bool cp210x_set_request(cdch_interface_t * p_cdc, uint8_t command, uint16_t value,
|
|
uint8_t * buffer, uint16_t length, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
tusb_control_request_t const request = {
|
|
.bmRequestType_bit = {
|
|
.recipient = TUSB_REQ_RCPT_INTERFACE,
|
|
.type = TUSB_REQ_TYPE_VENDOR,
|
|
.direction = TUSB_DIR_OUT
|
|
},
|
|
.bRequest = command,
|
|
.wValue = tu_htole16(value),
|
|
.wIndex = tu_htole16((uint16_t) p_cdc->bInterfaceNumber),
|
|
.wLength = tu_htole16(length)
|
|
};
|
|
|
|
// use usbh enum buf since application variable does not live long enough
|
|
uint8_t * enum_buf = NULL;
|
|
|
|
if (buffer && length > 0) {
|
|
enum_buf = usbh_get_enum_buf();
|
|
tu_memcpy_s(enum_buf, CFG_TUH_ENUMERATION_BUFSIZE, buffer, length);
|
|
}
|
|
|
|
tuh_xfer_t xfer = {
|
|
.daddr = p_cdc->daddr,
|
|
.ep_addr = 0,
|
|
.setup = &request,
|
|
.buffer = enum_buf,
|
|
.complete_cb = complete_cb,
|
|
.user_data = user_data
|
|
};
|
|
|
|
return tuh_control_xfer(&xfer);
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline bool cp210x_ifc_enable(cdch_interface_t *p_cdc, uint16_t enabled, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
return cp210x_set_request(p_cdc, CP210X_IFC_ENABLE, enabled, NULL, 0, complete_cb, user_data);
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline bool cp210x_set_mhs(cdch_interface_t *p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
// CP210x has the same bit coding
|
|
return cp210x_set_request(p_cdc, CP210X_SET_MHS,
|
|
(uint16_t) (CP210X_CONTROL_WRITE_DTR | CP210X_CONTROL_WRITE_RTS | p_cdc->requested_line.control_state.value),
|
|
NULL, 0, complete_cb, user_data);
|
|
}
|
|
|
|
//------------- Driver API -------------//
|
|
|
|
// internal control complete to update state such as line state, encoding
|
|
static void cp210x_internal_control_complete(cdch_interface_t *p_cdc, tuh_xfer_t *xfer) {
|
|
TU_VERIFY(xfer->result == XFER_RESULT_SUCCESS,);
|
|
switch (xfer->setup->bRequest) {
|
|
case CP210X_SET_MHS:
|
|
p_cdc->line.control_state = p_cdc->requested_line.control_state;
|
|
break;
|
|
|
|
case CP210X_SET_LINE_CTL:
|
|
p_cdc->line.coding.stop_bits = p_cdc->requested_line.coding.stop_bits;
|
|
p_cdc->line.coding.parity = p_cdc->requested_line.coding.parity;
|
|
p_cdc->line.coding.data_bits = p_cdc->requested_line.coding.data_bits;
|
|
break;
|
|
|
|
case CP210X_SET_BAUDRATE:
|
|
p_cdc->line.coding.bit_rate = p_cdc->requested_line.coding.bit_rate;
|
|
break;
|
|
|
|
default: break;
|
|
}
|
|
}
|
|
|
|
static bool cp210x_set_baudrate(cdch_interface_t *p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
// Not every baud rate is supported. See datasheets and AN205 "CP210x Baud Rate Support"
|
|
uint32_t baud_le = tu_htole32(p_cdc->requested_line.coding.bit_rate);
|
|
return cp210x_set_request(p_cdc, CP210X_SET_BAUDRATE, 0, (uint8_t *) &baud_le, 4, complete_cb, user_data);
|
|
}
|
|
|
|
static bool cp210x_set_data_format(cdch_interface_t *p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
TU_VERIFY(p_cdc->requested_line.coding.data_bits >= 5 && p_cdc->requested_line.coding.data_bits <= 8, 0);
|
|
uint16_t lcr = (uint16_t) ((p_cdc->requested_line.coding.data_bits & 0xfUL) << 8 | // data bit quantity is stored in bits 8-11
|
|
(p_cdc->requested_line.coding.parity & 0xfUL) << 4 | // parity is stored in bits 4-7, same coding
|
|
(p_cdc->requested_line.coding.stop_bits & 0xfUL)); // parity is stored in bits 0-3, same coding
|
|
|
|
return cp210x_set_request(p_cdc, CP210X_SET_LINE_CTL, lcr, NULL, 0, complete_cb, user_data);
|
|
}
|
|
|
|
static bool cp210x_set_modem_ctrl(cdch_interface_t *p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
return cp210x_set_mhs(p_cdc, complete_cb, user_data);
|
|
}
|
|
|
|
//------------- Enumeration -------------//
|
|
|
|
enum {
|
|
CONFIG_CP210X_IFC_ENABLE = 0,
|
|
CONFIG_CP210X_COMPLETE
|
|
};
|
|
|
|
static bool cp210x_open(uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len) {
|
|
// CP210x Interface includes 1 vendor interface + 2 bulk endpoints
|
|
TU_VERIFY(itf_desc->bInterfaceSubClass == 0 && itf_desc->bInterfaceProtocol == 0 && itf_desc->bNumEndpoints == 2);
|
|
TU_VERIFY(sizeof(tusb_desc_interface_t) + 2 * sizeof(tusb_desc_endpoint_t) <= max_len);
|
|
|
|
cdch_interface_t *p_cdc = make_new_itf(daddr, itf_desc);
|
|
TU_VERIFY(p_cdc);
|
|
|
|
p_cdc->serial_drid = SERIAL_DRIVER_CP210X;
|
|
|
|
// endpoint pair
|
|
tusb_desc_endpoint_t const *desc_ep = (tusb_desc_endpoint_t const *) tu_desc_next(itf_desc);
|
|
|
|
// data endpoints expected to be in pairs
|
|
return open_ep_stream_pair(p_cdc, desc_ep);
|
|
}
|
|
|
|
static bool cp210x_process_set_config(cdch_interface_t *p_cdc, tuh_xfer_t *xfer) {
|
|
TU_ASSERT(xfer->result == XFER_RESULT_SUCCESS);
|
|
const uintptr_t state = xfer->user_data;
|
|
|
|
switch (state) {
|
|
case CONFIG_CP210X_IFC_ENABLE:
|
|
TU_ASSERT(cp210x_ifc_enable(p_cdc, CP210X_UART_ENABLE, cdch_process_set_config, CONFIG_CP210X_COMPLETE));
|
|
break;
|
|
|
|
case CONFIG_CP210X_COMPLETE:
|
|
xfer->user_data = 0;// kick-off set line state on enum
|
|
cdch_process_line_state_on_enum(xfer);
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif
|
|
|
|
//--------------------------------------------------------------------+
|
|
// CH34x (CH340 & CH341)
|
|
//--------------------------------------------------------------------+
|
|
|
|
#if CFG_TUH_CDC_CH34X
|
|
|
|
static uint8_t ch34x_get_lcr(cdch_interface_t *p_cdc);
|
|
static uint16_t ch34x_get_divisor_prescaler(cdch_interface_t *p_cdc);
|
|
|
|
//------------- Control Request -------------//
|
|
|
|
static bool ch34x_set_request(cdch_interface_t *p_cdc, uint8_t direction, uint8_t request,
|
|
uint16_t value, uint16_t index, uint8_t *buffer, uint16_t length,
|
|
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
tusb_control_request_t const request_setup = {
|
|
.bmRequestType_bit = {
|
|
.recipient = TUSB_REQ_RCPT_DEVICE,
|
|
.type = TUSB_REQ_TYPE_VENDOR,
|
|
.direction = direction & 0x01u
|
|
},
|
|
.bRequest = request,
|
|
.wValue = tu_htole16(value),
|
|
.wIndex = tu_htole16(index),
|
|
.wLength = tu_htole16(length)
|
|
};
|
|
|
|
// use usbh enum buf since application variable does not live long enough
|
|
uint8_t *enum_buf = NULL;
|
|
|
|
if (buffer && length > 0) {
|
|
enum_buf = usbh_get_enum_buf();
|
|
if (direction == TUSB_DIR_OUT) {
|
|
tu_memcpy_s(enum_buf, CFG_TUH_ENUMERATION_BUFSIZE, buffer, length);
|
|
}
|
|
}
|
|
|
|
tuh_xfer_t xfer = {
|
|
.daddr = p_cdc->daddr,
|
|
.ep_addr = 0,
|
|
.setup = &request_setup,
|
|
.buffer = enum_buf,
|
|
.complete_cb = complete_cb,
|
|
.user_data = user_data
|
|
};
|
|
|
|
return tuh_control_xfer(&xfer);
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline bool ch34x_control_out(cdch_interface_t *p_cdc, uint8_t request, uint16_t value, uint16_t index,
|
|
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
return ch34x_set_request(p_cdc, TUSB_DIR_OUT, request, value, index, NULL, 0, complete_cb, user_data);
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline bool ch34x_control_in(cdch_interface_t *p_cdc, uint8_t request, uint16_t value, uint16_t index,
|
|
uint8_t *buffer, uint16_t buffersize, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
return ch34x_set_request(p_cdc, TUSB_DIR_IN, request, value, index, buffer, buffersize,
|
|
complete_cb, user_data);
|
|
}
|
|
|
|
TU_ATTR_ALWAYS_INLINE static inline bool ch34x_write_reg(cdch_interface_t *p_cdc, uint16_t reg, uint16_t reg_value,
|
|
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
return ch34x_control_out(p_cdc, CH34X_REQ_WRITE_REG, reg, reg_value, complete_cb, user_data);
|
|
}
|
|
|
|
//static bool ch34x_read_reg_request ( cdch_interface_t * p_cdc, uint16_t reg,
|
|
// uint8_t *buffer, uint16_t buffersize, tuh_xfer_cb_t complete_cb, uintptr_t user_data )
|
|
//{
|
|
// return ch34x_control_in ( p_cdc, CH34X_REQ_READ_REG, reg, 0, buffer, buffersize, complete_cb, user_data );
|
|
//}
|
|
|
|
//------------- Driver API -------------//
|
|
|
|
// internal control complete to update state such as line state, encoding
|
|
static void ch34x_internal_control_complete(cdch_interface_t *p_cdc, tuh_xfer_t *xfer) {
|
|
TU_VERIFY(xfer->result == XFER_RESULT_SUCCESS,);
|
|
switch (xfer->setup->bRequest) {
|
|
case CH34X_REQ_WRITE_REG:
|
|
// register write request
|
|
switch (tu_le16toh(xfer->setup->wValue)) {
|
|
case CH34X_REG16_DIVISOR_PRESCALER:
|
|
// baudrate
|
|
p_cdc->line.coding.bit_rate = p_cdc->requested_line.coding.bit_rate;
|
|
break;
|
|
|
|
case CH32X_REG16_LCR2_LCR:
|
|
// data format
|
|
p_cdc->line.coding.stop_bits = p_cdc->requested_line.coding.stop_bits;
|
|
p_cdc->line.coding.parity = p_cdc->requested_line.coding.parity;
|
|
p_cdc->line.coding.data_bits = p_cdc->requested_line.coding.data_bits;
|
|
break;
|
|
|
|
default: break;
|
|
}
|
|
break;
|
|
|
|
case CH34X_REQ_MODEM_CTRL:
|
|
p_cdc->line.control_state = p_cdc->requested_line.control_state;
|
|
break;
|
|
|
|
default: break;
|
|
}
|
|
}
|
|
|
|
static bool ch34x_set_data_format(cdch_interface_t *p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
const uint8_t lcr = ch34x_get_lcr(p_cdc);
|
|
TU_VERIFY(lcr);
|
|
return ch34x_write_reg(p_cdc, CH32X_REG16_LCR2_LCR, lcr, complete_cb, user_data);
|
|
}
|
|
|
|
static bool ch34x_set_baudrate(cdch_interface_t *p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
const uint16_t div_ps = ch34x_get_divisor_prescaler(p_cdc);
|
|
TU_VERIFY(div_ps);
|
|
return ch34x_write_reg(p_cdc, CH34X_REG16_DIVISOR_PRESCALER, div_ps, complete_cb, user_data);
|
|
}
|
|
|
|
static bool ch34x_set_modem_ctrl(cdch_interface_t * p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
// CH34x signals are inverted
|
|
uint8_t control = ~((p_cdc->requested_line.control_state.rts ? CH34X_BIT_RTS : 0) |
|
|
(p_cdc->requested_line.control_state.dtr ? CH34X_BIT_DTR : 0));
|
|
return ch34x_control_out(p_cdc, CH34X_REQ_MODEM_CTRL, control, 0, complete_cb, user_data);
|
|
}
|
|
|
|
//------------- Enumeration -------------//
|
|
|
|
enum {
|
|
CONFIG_CH34X_READ_VERSION = 0,
|
|
CONFIG_CH34X_SERIAL_INIT,
|
|
CONFIG_CH34X_SPECIAL_REG_WRITE,
|
|
CONFIG_CH34X_FLOW_CONTROL,
|
|
CONFIG_CH34X_COMPLETE
|
|
};
|
|
|
|
static bool ch34x_open(uint8_t daddr, tusb_desc_interface_t const * itf_desc, uint16_t max_len) {
|
|
// CH34x Interface includes 1 vendor interface + 2 bulk + 1 interrupt endpoints
|
|
TU_VERIFY(itf_desc->bNumEndpoints == 3);
|
|
TU_VERIFY(sizeof(tusb_desc_interface_t) + 3 * sizeof(tusb_desc_endpoint_t) <= max_len);
|
|
|
|
cdch_interface_t * p_cdc = make_new_itf(daddr, itf_desc);
|
|
TU_VERIFY(p_cdc);
|
|
|
|
p_cdc->serial_drid = SERIAL_DRIVER_CH34X;
|
|
|
|
tusb_desc_endpoint_t const * desc_ep = (tusb_desc_endpoint_t const *) tu_desc_next(itf_desc);
|
|
|
|
// data endpoints expected to be in pairs
|
|
TU_ASSERT(open_ep_stream_pair(p_cdc, desc_ep));
|
|
desc_ep += 2;
|
|
|
|
// Interrupt endpoint: not used for now
|
|
TU_ASSERT(TUSB_DESC_ENDPOINT == tu_desc_type(desc_ep) &&
|
|
TUSB_XFER_INTERRUPT == desc_ep->bmAttributes.xfer);
|
|
TU_ASSERT(tuh_edpt_open(daddr, desc_ep));
|
|
p_cdc->ep_notif = desc_ep->bEndpointAddress;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ch34x_process_set_config(cdch_interface_t *p_cdc, tuh_xfer_t *xfer) {
|
|
TU_ASSERT(xfer->result == XFER_RESULT_SUCCESS);
|
|
const uintptr_t state = xfer->user_data;
|
|
|
|
switch (state) {
|
|
case CONFIG_CH34X_READ_VERSION: {
|
|
uint8_t* enum_buf = usbh_get_enum_buf();
|
|
TU_ASSERT(ch34x_control_in(p_cdc, CH34X_REQ_READ_VERSION, 0, 0, enum_buf, 2,
|
|
cdch_process_set_config, CONFIG_CH34X_SERIAL_INIT));
|
|
break;
|
|
}
|
|
|
|
case CONFIG_CH34X_SERIAL_INIT: {
|
|
// handle version read data, set CH34x line coding (incl. baudrate)
|
|
uint8_t const version = xfer->buffer[0];
|
|
TU_LOG_CDC(p_cdc, "Chip Version = 0x%02x", version);
|
|
// only versions >= 0x30 are tested, below 0x30 seems having other programming
|
|
// see drivers from WCH vendor, Linux kernel and FreeBSD
|
|
if (version >= 0x30) {
|
|
// init CH34x with line coding
|
|
p_cdc->requested_line.coding = (cdc_line_coding_t) CFG_TUH_CDC_LINE_CODING_ON_ENUM_CH34X;
|
|
uint16_t const div_ps = ch34x_get_divisor_prescaler(p_cdc);
|
|
uint8_t const lcr = ch34x_get_lcr(p_cdc);
|
|
TU_ASSERT(div_ps != 0 && lcr != 0);
|
|
TU_ASSERT(ch34x_control_out(p_cdc, CH34X_REQ_SERIAL_INIT, tu_u16(lcr, 0x9c), div_ps,
|
|
cdch_process_set_config, CONFIG_CH34X_SPECIAL_REG_WRITE));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case CONFIG_CH34X_SPECIAL_REG_WRITE:
|
|
// overtake line coding and do special reg write, purpose unknown, overtaken from WCH driver
|
|
p_cdc->line.coding = (cdc_line_coding_t) CFG_TUH_CDC_LINE_CODING_ON_ENUM_CH34X;
|
|
TU_ASSERT(ch34x_write_reg(p_cdc, TU_U16(CH341_REG_0x0F, CH341_REG_0x2C), 0x0007,
|
|
cdch_process_set_config, CONFIG_CH34X_FLOW_CONTROL));
|
|
break;
|
|
|
|
case CONFIG_CH34X_FLOW_CONTROL:
|
|
// no hardware flow control
|
|
TU_ASSERT(ch34x_write_reg(p_cdc, TU_U16(CH341_REG_0x27, CH341_REG_0x27), 0x0000,
|
|
cdch_process_set_config, CONFIG_CH34X_COMPLETE));
|
|
break;
|
|
|
|
case CONFIG_CH34X_COMPLETE:
|
|
xfer->user_data = 0; // kick-off set line state on enum
|
|
cdch_process_line_state_on_enum(xfer);
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//------------- Helper -------------//
|
|
|
|
// calculate divisor and prescaler for baudrate, return it as 16-bit combined value
|
|
static uint16_t ch34x_get_divisor_prescaler(cdch_interface_t *p_cdc) {
|
|
uint32_t const baval = p_cdc->requested_line.coding.bit_rate;
|
|
uint8_t a;
|
|
uint8_t b;
|
|
uint32_t c;
|
|
|
|
TU_VERIFY(baval != 0 && baval <= 2000000, 0);
|
|
switch (baval) {
|
|
case 921600:
|
|
a = 0xf3;
|
|
b = 7;
|
|
break;
|
|
|
|
case 307200:
|
|
a = 0xd9;
|
|
b = 7;
|
|
break;
|
|
|
|
default:
|
|
if (baval > 6000000 / 255) {
|
|
b = 3;
|
|
c = 6000000;
|
|
} else if (baval > 750000 / 255) {
|
|
b = 2;
|
|
c = 750000;
|
|
} else if (baval > 93750 / 255) {
|
|
b = 1;
|
|
c = 93750;
|
|
} else {
|
|
b = 0;
|
|
c = 11719;
|
|
}
|
|
a = (uint8_t) (c / baval);
|
|
if (a == 0 || a == 0xFF) {
|
|
return 0;
|
|
}
|
|
if ((c / a - baval) > (baval - c / (a + 1))) {
|
|
a++;
|
|
}
|
|
a = (uint8_t) (256 - a);
|
|
break;
|
|
}
|
|
|
|
// reg divisor = a, reg prescaler = b
|
|
// According to linux code we need to set bit 7 of UCHCOM_REG_BPS_PRE,
|
|
// otherwise the chip will buffer data.
|
|
return (uint16_t) ((uint16_t) a << 8 | 0x80 | b);
|
|
}
|
|
|
|
// calculate lcr value from data coding
|
|
static uint8_t ch34x_get_lcr(cdch_interface_t *p_cdc) {
|
|
uint8_t const stop_bits = p_cdc->requested_line.coding.stop_bits;
|
|
uint8_t const parity = p_cdc->requested_line.coding.parity;
|
|
uint8_t const data_bits = p_cdc->requested_line.coding.data_bits;
|
|
|
|
uint8_t lcr = CH34X_LCR_ENABLE_RX | CH34X_LCR_ENABLE_TX;
|
|
TU_VERIFY(data_bits >= 5 && data_bits <= 8);
|
|
lcr |= (uint8_t) (data_bits - 5);
|
|
|
|
switch (parity) {
|
|
case CDC_LINE_CODING_PARITY_NONE:
|
|
break;
|
|
|
|
case CDC_LINE_CODING_PARITY_ODD:
|
|
lcr |= CH34X_LCR_ENABLE_PAR;
|
|
break;
|
|
|
|
case CDC_LINE_CODING_PARITY_EVEN:
|
|
lcr |= CH34X_LCR_ENABLE_PAR | CH34X_LCR_PAR_EVEN;
|
|
break;
|
|
|
|
case CDC_LINE_CODING_PARITY_MARK:
|
|
lcr |= CH34X_LCR_ENABLE_PAR | CH34X_LCR_MARK_SPACE;
|
|
break;
|
|
|
|
case CDC_LINE_CODING_PARITY_SPACE:
|
|
lcr |= CH34X_LCR_ENABLE_PAR | CH34X_LCR_MARK_SPACE | CH34X_LCR_PAR_EVEN;
|
|
break;
|
|
|
|
default: break;
|
|
}
|
|
|
|
// 1.5 stop bits not supported
|
|
TU_VERIFY(stop_bits != CDC_LINE_CODING_STOP_BITS_1_5);
|
|
if (stop_bits == CDC_LINE_CODING_STOP_BITS_2) {
|
|
lcr |= CH34X_LCR_STOP_BITS_2;
|
|
}
|
|
|
|
return lcr;
|
|
}
|
|
|
|
#endif // CFG_TUH_CDC_CH34X
|
|
|
|
//--------------------------------------------------------------------+
|
|
// PL2303
|
|
//--------------------------------------------------------------------+
|
|
#if CFG_TUH_CDC_PL2303
|
|
|
|
static pl2303_type_t pl2303_detect_type(cdch_interface_t *p_cdc, uint8_t step);
|
|
static bool pl2303_encode_baud_rate(cdch_interface_t *p_cdc, uint8_t buf[PL2303_LINE_CODING_BAUDRATE_BUFSIZE]);
|
|
|
|
//------------- Control Request -------------//
|
|
static bool pl2303_set_request(cdch_interface_t *p_cdc, uint8_t request, uint8_t requesttype,
|
|
uint16_t value, uint16_t index, uint8_t *buffer, uint16_t length,
|
|
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
tusb_control_request_t const request_setup = {
|
|
.bmRequestType = requesttype,
|
|
.bRequest = request,
|
|
.wValue = tu_htole16(value),
|
|
.wIndex = tu_htole16(index),
|
|
.wLength = tu_htole16(length)
|
|
};
|
|
|
|
// use usbh enum buf since application variable does not live long enough
|
|
uint8_t *enum_buf = NULL;
|
|
|
|
if (buffer && length > 0) {
|
|
enum_buf = usbh_get_enum_buf();
|
|
if (request_setup.bmRequestType_bit.direction == TUSB_DIR_OUT) {
|
|
tu_memcpy_s(enum_buf, CFG_TUH_ENUMERATION_BUFSIZE, buffer, length);
|
|
}
|
|
}
|
|
|
|
tuh_xfer_t xfer = {
|
|
.daddr = p_cdc->daddr,
|
|
.ep_addr = 0,
|
|
.setup = &request_setup,
|
|
.buffer = enum_buf,
|
|
.complete_cb = complete_cb,
|
|
.user_data = user_data
|
|
};
|
|
|
|
return tuh_control_xfer(&xfer);
|
|
}
|
|
|
|
static bool pl2303_vendor_read(cdch_interface_t *p_cdc, uint16_t value, uint8_t *buf,
|
|
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
uint8_t request = p_cdc->pl2303.type == PL2303_TYPE_HXN ? PL2303_VENDOR_READ_NREQUEST : PL2303_VENDOR_READ_REQUEST;
|
|
return pl2303_set_request(p_cdc, request, PL2303_VENDOR_READ_REQUEST_TYPE, value, 0, buf, 1, complete_cb, user_data);
|
|
}
|
|
|
|
static bool pl2303_vendor_write(cdch_interface_t *p_cdc, uint16_t value, uint16_t index,
|
|
tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
uint8_t request = p_cdc->pl2303.type == PL2303_TYPE_HXN ? PL2303_VENDOR_WRITE_NREQUEST : PL2303_VENDOR_WRITE_REQUEST;
|
|
return pl2303_set_request(p_cdc, request, PL2303_VENDOR_WRITE_REQUEST_TYPE, value, index, NULL, 0, complete_cb, user_data);
|
|
}
|
|
|
|
static inline bool pl2303_supports_hx_status(cdch_interface_t *p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
uint8_t buf = 0;
|
|
return pl2303_set_request(p_cdc, PL2303_VENDOR_READ_REQUEST, PL2303_VENDOR_READ_REQUEST_TYPE, PL2303_READ_TYPE_HX_STATUS, 0,
|
|
&buf, 1, complete_cb, user_data);
|
|
}
|
|
|
|
//static bool pl2303_get_line_request(cdch_interface_t * p_cdc, uint8_t buf[PL2303_LINE_CODING_BUFSIZE]) {
|
|
// return pl2303_set_request(p_cdc, PL2303_GET_LINE_REQUEST, PL2303_GET_LINE_REQUEST_TYPE, 0, 0, buf, PL2303_LINE_CODING_BUFSIZE);
|
|
//}
|
|
|
|
//static bool pl2303_set_break(cdch_interface_t * p_cdc, bool enable) {
|
|
// uint16_t state = enable ? PL2303_BREAK_ON : PL2303_BREAK_OFF;
|
|
// return pl2303_set_request(p_cdc, PL2303_BREAK_REQUEST, PL2303_BREAK_REQUEST_TYPE, state, 0, NULL, 0);
|
|
//}
|
|
|
|
static inline int pl2303_clear_halt(cdch_interface_t *p_cdc, uint8_t endp, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
/* we don't care if it wasn't halted first. in fact some devices
|
|
* (like some ibmcam model 1 units) seem to expect hosts to make
|
|
* this request for iso endpoints, which can't halt!
|
|
*/
|
|
return pl2303_set_request(p_cdc, TUSB_REQ_CLEAR_FEATURE, PL2303_CLEAR_HALT_REQUEST_TYPE, TUSB_REQ_FEATURE_EDPT_HALT, endp,
|
|
NULL, 0, complete_cb, user_data);
|
|
}
|
|
|
|
//------------- Driver API -------------//
|
|
|
|
// internal control complete to update state such as line state, encoding
|
|
static void pl2303_internal_control_complete(cdch_interface_t *p_cdc, tuh_xfer_t *xfer) {
|
|
TU_VERIFY(xfer->result == XFER_RESULT_SUCCESS,);
|
|
if (xfer->setup->bRequest == PL2303_SET_LINE_REQUEST &&
|
|
xfer->setup->bmRequestType == PL2303_SET_LINE_REQUEST_TYPE) {
|
|
p_cdc->line.coding = p_cdc->requested_line.coding;
|
|
}
|
|
if (xfer->setup->bRequest == PL2303_SET_CONTROL_REQUEST &&
|
|
xfer->setup->bmRequestType == PL2303_SET_CONTROL_REQUEST_TYPE) {
|
|
p_cdc->line.control_state = p_cdc->requested_line.control_state;
|
|
}
|
|
}
|
|
|
|
static bool pl2303_set_line_coding(cdch_interface_t *p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
// the caller has to precheck, that the new line coding different than the current, else false returned
|
|
uint8_t buf[PL2303_LINE_CODING_BUFSIZE];
|
|
/*
|
|
* Some PL2303 are known to lose bytes if you change serial settings
|
|
* even to the same values as before. Thus we actually need to filter
|
|
* in this specific case.
|
|
*/
|
|
TU_VERIFY(p_cdc->requested_line.coding.data_bits != p_cdc->line.coding.data_bits ||
|
|
p_cdc->requested_line.coding.stop_bits != p_cdc->line.coding.stop_bits ||
|
|
p_cdc->requested_line.coding.parity != p_cdc->line.coding.parity ||
|
|
p_cdc->requested_line.coding.bit_rate != p_cdc->line.coding.bit_rate );
|
|
|
|
/* For reference buf[6] data bits value */
|
|
TU_VERIFY(p_cdc->requested_line.coding.data_bits >= 5 && p_cdc->requested_line.coding.data_bits <= 8, 0);
|
|
buf[6] = p_cdc->requested_line.coding.data_bits;
|
|
|
|
/* For reference buf[0]:buf[3] baud rate value */
|
|
TU_VERIFY(pl2303_encode_baud_rate(p_cdc, &buf[0]));
|
|
|
|
/* For reference buf[4]=0 is 1 stop bits */
|
|
/* For reference buf[4]=1 is 1.5 stop bits */
|
|
/* For reference buf[4]=2 is 2 stop bits */
|
|
buf[4] = p_cdc->requested_line.coding.stop_bits; // PL2303 has the same coding
|
|
|
|
/* For reference buf[5]=0 is none parity */
|
|
/* For reference buf[5]=1 is odd parity */
|
|
/* For reference buf[5]=2 is even parity */
|
|
/* For reference buf[5]=3 is mark parity */
|
|
/* For reference buf[5]=4 is space parity */
|
|
buf[5] = p_cdc->requested_line.coding.parity; // PL2303 has the same coding
|
|
|
|
return pl2303_set_request(p_cdc, PL2303_SET_LINE_REQUEST, PL2303_SET_LINE_REQUEST_TYPE, 0, 0,
|
|
buf, PL2303_LINE_CODING_BUFSIZE, complete_cb, user_data);
|
|
}
|
|
|
|
static bool pl2303_set_modem_ctrl(cdch_interface_t *p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
|
|
// PL2303 has the same bit coding
|
|
return pl2303_set_request(p_cdc, PL2303_SET_CONTROL_REQUEST, PL2303_SET_CONTROL_REQUEST_TYPE,
|
|
p_cdc->requested_line.control_state.value, 0, NULL, 0, complete_cb, user_data);
|
|
}
|
|
|
|
//------------- Enumeration -------------//
|
|
|
|
enum {
|
|
CONFIG_PL2303_DETECT_TYPE = 0,
|
|
CONFIG_PL2303_READ1,
|
|
CONFIG_PL2303_WRITE1,
|
|
CONFIG_PL2303_READ2,
|
|
CONFIG_PL2303_READ3,
|
|
CONFIG_PL2303_READ4,
|
|
CONFIG_PL2303_WRITE2,
|
|
CONFIG_PL2303_READ5,
|
|
CONFIG_PL2303_READ6,
|
|
CONFIG_PL2303_WRITE3,
|
|
CONFIG_PL2303_WRITE4,
|
|
CONFIG_PL2303_WRITE5,
|
|
CONFIG_PL2303_RESET_ENDP1,
|
|
CONFIG_PL2303_RESET_ENDP2,
|
|
// CONFIG_PL2303_FLOW_CTRL_READ,
|
|
// CONFIG_PL2303_FLOW_CTRL_WRITE,
|
|
CONFIG_PL2303_COMPLETE
|
|
};
|
|
|
|
static bool pl2303_open(uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len) {
|
|
// PL2303 Interface includes 1 vendor interface + 1 interrupt endpoints + 2 bulk
|
|
TU_VERIFY(itf_desc->bNumEndpoints == 3);
|
|
TU_VERIFY(sizeof(tusb_desc_interface_t) + 3 * sizeof(tusb_desc_endpoint_t) <= max_len);
|
|
|
|
cdch_interface_t *p_cdc = make_new_itf(daddr, itf_desc);
|
|
TU_VERIFY(p_cdc);
|
|
|
|
p_cdc->serial_drid = SERIAL_DRIVER_PL2303;
|
|
p_cdc->pl2303.quirks = 0;
|
|
p_cdc->pl2303.supports_hx_status = false;
|
|
|
|
tusb_desc_endpoint_t const *desc_ep = (tusb_desc_endpoint_t const *) tu_desc_next(itf_desc);
|
|
|
|
// Interrupt endpoint: not used for now
|
|
TU_ASSERT(TUSB_DESC_ENDPOINT == tu_desc_type(desc_ep) &&
|
|
TUSB_XFER_INTERRUPT == desc_ep->bmAttributes.xfer);
|
|
TU_ASSERT(tuh_edpt_open(daddr, desc_ep));
|
|
p_cdc->ep_notif = desc_ep->bEndpointAddress;
|
|
desc_ep += 1;
|
|
|
|
// data endpoints expected to be in pairs
|
|
TU_ASSERT(open_ep_stream_pair(p_cdc, desc_ep));
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool pl2303_process_set_config(cdch_interface_t *p_cdc, tuh_xfer_t *xfer) {
|
|
// state CONFIG_PL2303_READ1 may have no success due to expected stall by pl2303_supports_hx_status()
|
|
const uintptr_t state = xfer->user_data;
|
|
TU_ASSERT(xfer->result == XFER_RESULT_SUCCESS || state == CONFIG_PL2303_READ1);
|
|
uint8_t* enum_buf = usbh_get_enum_buf();
|
|
pl2303_type_t type;
|
|
|
|
switch (state) {
|
|
// from here sequence overtaken from Linux Kernel function pl2303_startup()
|
|
case CONFIG_PL2303_DETECT_TYPE:
|
|
// get type and quirks (step 1)
|
|
type = pl2303_detect_type(p_cdc, 1);
|
|
TU_ASSERT(type != PL2303_TYPE_UNKNOWN);
|
|
if (type == PL2303_TYPE_NEED_SUPPORTS_HX_STATUS) {
|
|
TU_ASSERT(pl2303_supports_hx_status(p_cdc, cdch_process_set_config, CONFIG_PL2303_READ1));
|
|
break;
|
|
} else {
|
|
// no transfer triggered and continue with CONFIG_PL2303_READ1
|
|
TU_ATTR_FALLTHROUGH;
|
|
}
|
|
|
|
case CONFIG_PL2303_READ1:
|
|
// get supports_hx_status, type and quirks (step 2), do special read
|
|
// will not be true, if coming directly from previous case
|
|
if (xfer->user_data == CONFIG_PL2303_READ1 && xfer->result == XFER_RESULT_SUCCESS) {
|
|
p_cdc->pl2303.supports_hx_status = true;
|
|
}
|
|
type = pl2303_detect_type(p_cdc, 2); // step 2 now with supports_hx_status
|
|
TU_ASSERT(type != PL2303_TYPE_UNKNOWN);
|
|
TU_LOG_DRV(" PL2303 type detected: %u\r\n", type);
|
|
|
|
p_cdc->pl2303.type = type;
|
|
p_cdc->pl2303.quirks |= pl2303_type_data[type].quirks;
|
|
|
|
// purpose unknown, overtaken from Linux Kernel driver
|
|
if (p_cdc->pl2303.type != PL2303_TYPE_HXN) {
|
|
TU_ASSERT(pl2303_vendor_read(p_cdc, 0x8484, enum_buf, cdch_process_set_config, CONFIG_PL2303_WRITE1));
|
|
break;
|
|
}// else: continue with next step
|
|
TU_ATTR_FALLTHROUGH;
|
|
|
|
case CONFIG_PL2303_WRITE1:
|
|
// purpose unknown, overtaken from Linux Kernel driver
|
|
if (p_cdc->pl2303.type != PL2303_TYPE_HXN) {
|
|
TU_ASSERT(pl2303_vendor_write(p_cdc, 0x0404, 0, cdch_process_set_config, CONFIG_PL2303_READ2));
|
|
break;
|
|
}// else: continue with next step
|
|
TU_ATTR_FALLTHROUGH;
|
|
|
|
case CONFIG_PL2303_READ2:
|
|
// purpose unknown, overtaken from Linux Kernel driver
|
|
if (p_cdc->pl2303.type != PL2303_TYPE_HXN) {
|
|
TU_ASSERT(pl2303_vendor_read(p_cdc, 0x8484, enum_buf, cdch_process_set_config, CONFIG_PL2303_READ3));
|
|
break;
|
|
}// else: continue with next step
|
|
TU_ATTR_FALLTHROUGH;
|
|
|
|
case CONFIG_PL2303_READ3:
|
|
// purpose unknown, overtaken from Linux Kernel driver
|
|
if (p_cdc->pl2303.type != PL2303_TYPE_HXN) {
|
|
TU_ASSERT(pl2303_vendor_read(p_cdc, 0x8383, enum_buf, cdch_process_set_config, CONFIG_PL2303_READ4));
|
|
break;
|
|
}// else: continue with next step
|
|
TU_ATTR_FALLTHROUGH;
|
|
|
|
case CONFIG_PL2303_READ4:
|
|
// purpose unknown, overtaken from Linux Kernel driver
|
|
if (p_cdc->pl2303.type != PL2303_TYPE_HXN) {
|
|
TU_ASSERT(pl2303_vendor_read(p_cdc, 0x8484, enum_buf, cdch_process_set_config, CONFIG_PL2303_WRITE2));
|
|
break;
|
|
}// else: continue with next step
|
|
TU_ATTR_FALLTHROUGH;
|
|
|
|
case CONFIG_PL2303_WRITE2:
|
|
// purpose unknown, overtaken from Linux Kernel driver
|
|
if (p_cdc->pl2303.type != PL2303_TYPE_HXN) {
|
|
TU_ASSERT(pl2303_vendor_write(p_cdc, 0x0404, 1, cdch_process_set_config, CONFIG_PL2303_READ5));
|
|
break;
|
|
}// else: continue with next step
|
|
TU_ATTR_FALLTHROUGH;
|
|
|
|
case CONFIG_PL2303_READ5:
|
|
// purpose unknown, overtaken from Linux Kernel driver
|
|
if (p_cdc->pl2303.type != PL2303_TYPE_HXN) {
|
|
TU_ASSERT(pl2303_vendor_read(p_cdc, 0x8484, enum_buf, cdch_process_set_config, CONFIG_PL2303_READ6));
|
|
break;
|
|
}// else: continue with next step
|
|
TU_ATTR_FALLTHROUGH;
|
|
|
|
case CONFIG_PL2303_READ6:
|
|
// purpose unknown, overtaken from Linux Kernel driver
|
|
if (p_cdc->pl2303.type != PL2303_TYPE_HXN) {
|
|
TU_ASSERT(pl2303_vendor_read(p_cdc, 0x8383, enum_buf, cdch_process_set_config, CONFIG_PL2303_WRITE3));
|
|
break;
|
|
}// else: continue with next step
|
|
TU_ATTR_FALLTHROUGH;
|
|
|
|
case CONFIG_PL2303_WRITE3:
|
|
// purpose unknown, overtaken from Linux Kernel driver
|
|
if (p_cdc->pl2303.type != PL2303_TYPE_HXN) {
|
|
TU_ASSERT(pl2303_vendor_write(p_cdc, 0, 1, cdch_process_set_config, CONFIG_PL2303_WRITE4));
|
|
break;
|
|
}// else: continue with next step
|
|
TU_ATTR_FALLTHROUGH;
|
|
|
|
case CONFIG_PL2303_WRITE4:
|
|
// purpose unknown, overtaken from Linux Kernel driver
|
|
if (p_cdc->pl2303.type != PL2303_TYPE_HXN) {
|
|
TU_ASSERT(pl2303_vendor_write(p_cdc, 1, 0, cdch_process_set_config, CONFIG_PL2303_WRITE5));
|
|
break;
|
|
}// else: continue with next step
|
|
TU_ATTR_FALLTHROUGH;
|
|
|
|
case CONFIG_PL2303_WRITE5:
|
|
// purpose unknown, overtaken from Linux Kernel driver
|
|
if (p_cdc->pl2303.type != PL2303_TYPE_HXN) {
|
|
uint16_t const windex = (p_cdc->pl2303.quirks & PL2303_QUIRK_LEGACY) ? 0x24 : 0x44;
|
|
TU_ASSERT(pl2303_vendor_write(p_cdc, 2, windex, cdch_process_set_config, CONFIG_PL2303_RESET_ENDP1));
|
|
break;
|
|
}// else: continue with next step
|
|
TU_ATTR_FALLTHROUGH;
|
|
|
|
// from here sequence overtaken from Linux Kernel function pl2303_open()
|
|
case CONFIG_PL2303_RESET_ENDP1:
|
|
// step 1
|
|
if (p_cdc->pl2303.quirks & PL2303_QUIRK_LEGACY) {
|
|
TU_ASSERT(pl2303_clear_halt(p_cdc, PL2303_OUT_EP, cdch_process_set_config, CONFIG_PL2303_RESET_ENDP2));
|
|
} else {
|
|
/* reset upstream data pipes */
|
|
if (p_cdc->pl2303.type == PL2303_TYPE_HXN) {
|
|
TU_ASSERT(pl2303_vendor_write(p_cdc, PL2303_HXN_RESET_REG,// skip CONFIG_PL2303_RESET_ENDP2, no 2nd step
|
|
PL2303_HXN_RESET_UPSTREAM_PIPE | PL2303_HXN_RESET_DOWNSTREAM_PIPE,
|
|
cdch_process_set_config, CONFIG_PL2303_COMPLETE));
|
|
} else {
|
|
pl2303_vendor_write(p_cdc, 8, 0, cdch_process_set_config, CONFIG_PL2303_RESET_ENDP2);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case CONFIG_PL2303_RESET_ENDP2:
|
|
// step 2
|
|
if (p_cdc->pl2303.quirks & PL2303_QUIRK_LEGACY) {
|
|
TU_ASSERT(pl2303_clear_halt(p_cdc, PL2303_IN_EP, cdch_process_set_config, CONFIG_PL2303_COMPLETE));
|
|
} else {
|
|
/* reset upstream data pipes */
|
|
if (p_cdc->pl2303.type == PL2303_TYPE_HXN) {
|
|
// here nothing to do, only structure of previous step overtaken for better reading and comparison
|
|
} else {
|
|
TU_ASSERT(pl2303_vendor_write(p_cdc, 9, 0, cdch_process_set_config, CONFIG_PL2303_COMPLETE));
|
|
}
|
|
}
|
|
break;
|
|
|
|
// skipped, because it's not working with each PL230x. flow control can be also set by PL2303 EEPROM Writer Program
|
|
// case CONFIG_PL2303_FLOW_CTRL_READ:
|
|
// // read flow control register for modify & write back in next step
|
|
// if (p_cdc->pl2303.type == PL2303_TYPE_HXN) {
|
|
// TU_LOG_P_CDC ( "1\r\n" );
|
|
// TU_ASSERT(pl2303_vendor_read(p_cdc, PL2303_HXN_FLOWCTRL_REG, &buf,
|
|
// cdch_process_set_config, CONFIG_PL2303_FLOW_CTRL_WRITE));
|
|
// } else {
|
|
// TU_LOG_P_CDC ( "2\r\n" );
|
|
// TU_ASSERT(pl2303_vendor_read(p_cdc, 0, &buf, cdch_process_set_config, CONFIG_PL2303_FLOW_CTRL_WRITE));
|
|
// }
|
|
// break;
|
|
//
|
|
// case CONFIG_PL2303_FLOW_CTRL_WRITE:
|
|
// // no flow control
|
|
// buf = xfer->buffer[0];
|
|
// if (p_cdc->pl2303.type == PL2303_TYPE_HXN) {
|
|
// buf &= (uint8_t) ~PL2303_HXN_FLOWCTRL_MASK;
|
|
// buf |= PL2303_HXN_FLOWCTRL_NONE;
|
|
// TU_ASSERT(pl2303_vendor_write(p_cdc, PL2303_HXN_FLOWCTRL_REG, buf,
|
|
// cdch_process_set_config, CONFIG_PL2303_COMPLETE));
|
|
// } else {
|
|
// buf &= (uint8_t) ~PL2303_FLOWCTRL_MASK;
|
|
// TU_ASSERT(pl2303_vendor_write(p_cdc, 0, buf,
|
|
// cdch_process_set_config, CONFIG_PL2303_COMPLETE));
|
|
// }
|
|
// break;
|
|
|
|
case CONFIG_PL2303_COMPLETE:
|
|
xfer->user_data = 0; // kick-off set line state on enum
|
|
cdch_process_line_state_on_enum(xfer);
|
|
break;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//------------- Helper -------------//
|
|
|
|
static pl2303_type_t pl2303_detect_type(cdch_interface_t *p_cdc, uint8_t step) {
|
|
tusb_desc_device_t desc_dev;
|
|
TU_VERIFY(tuh_descriptor_get_device_local(p_cdc->daddr, &desc_dev), PL2303_TYPE_UNKNOWN);
|
|
|
|
// Legacy PL2303H, variants 0 and 1 (difference unknown).
|
|
if (desc_dev.bDeviceClass == 0x02) {
|
|
return PL2303_TYPE_H; /* variant 0 */
|
|
}
|
|
|
|
if (desc_dev.bMaxPacketSize0 != 0x40) {
|
|
if (desc_dev.bDeviceClass == 0x00 || desc_dev.bDeviceClass == 0xff) {
|
|
return PL2303_TYPE_H; /* variant 1 */
|
|
}
|
|
return PL2303_TYPE_H; /* variant 0 */
|
|
}
|
|
|
|
switch (desc_dev.bcdUSB) {
|
|
case 0x101:
|
|
/* USB 1.0.1? Let's assume they meant 1.1... */
|
|
TU_ATTR_FALLTHROUGH;
|
|
case 0x110:
|
|
switch (desc_dev.bcdDevice) {
|
|
case 0x300: return PL2303_TYPE_HX;
|
|
case 0x400: return PL2303_TYPE_HXD;
|
|
default: return PL2303_TYPE_HX;
|
|
}
|
|
break;
|
|
|
|
case 0x200:
|
|
switch (desc_dev.bcdDevice) {
|
|
case 0x100: /* GC */
|
|
case 0x105:
|
|
return PL2303_TYPE_HXN;
|
|
|
|
case 0x300: /* GT / TA */
|
|
if (step == 1) {
|
|
// step 1 trigger pl2303_supports_hx_status() request
|
|
return PL2303_TYPE_NEED_SUPPORTS_HX_STATUS;
|
|
} else {
|
|
// step 2 use supports_hx_status
|
|
if (p_cdc->pl2303.supports_hx_status) {
|
|
return PL2303_TYPE_TA;
|
|
}
|
|
}
|
|
TU_ATTR_FALLTHROUGH;
|
|
case 0x305:
|
|
case 0x400: /* GL */
|
|
case 0x405:
|
|
return PL2303_TYPE_HXN;
|
|
|
|
case 0x500: /* GE / TB */
|
|
if (step == 1) {
|
|
// step 1 trigger pl2303_supports_hx_status() request
|
|
return PL2303_TYPE_NEED_SUPPORTS_HX_STATUS;
|
|
} else {
|
|
// step 2 use supports_hx_status
|
|
if (p_cdc->pl2303.supports_hx_status) {
|
|
return PL2303_TYPE_TB;
|
|
}
|
|
}
|
|
TU_ATTR_FALLTHROUGH;
|
|
case 0x505:
|
|
case 0x600: /* GS */
|
|
case 0x605:
|
|
case 0x700: /* GR */
|
|
case 0x705:
|
|
return PL2303_TYPE_HXN;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default: break;
|
|
}
|
|
|
|
TU_LOG_CDC(p_cdc, "unknown device type bcdUSB = 0x%04x", desc_dev.bcdUSB);
|
|
return PL2303_TYPE_UNKNOWN;
|
|
}
|
|
|
|
/*
|
|
* Returns the nearest supported baud rate that can be set directly without
|
|
* using divisors.
|
|
*/
|
|
static uint32_t pl2303_get_supported_baud_rate(uint32_t baud) {
|
|
static const uint32_t baud_sup[] = {
|
|
75, 150, 300, 600, 1200, 1800, 2400, 3600, 4800, 7200, 9600,
|
|
14400, 19200, 28800, 38400, 57600, 115200, 230400, 460800,
|
|
614400, 921600, 1228800, 2457600, 3000000, 6000000
|
|
};
|
|
|
|
uint8_t i;
|
|
for (i = 0; i < TU_ARRAY_SIZE(baud_sup); ++i) {
|
|
if (baud_sup[i] > baud) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == TU_ARRAY_SIZE(baud_sup)) {
|
|
baud = baud_sup[i - 1];
|
|
} else if (i > 0 && (baud_sup[i] - baud) > (baud - baud_sup[i - 1])) {
|
|
baud = baud_sup[i - 1];
|
|
} else {
|
|
baud = baud_sup[i];
|
|
}
|
|
|
|
return baud;
|
|
}
|
|
|
|
/*
|
|
* NOTE: If unsupported baud rates are set directly, the PL2303 seems to
|
|
* use 9600 baud.
|
|
*/
|
|
static uint32_t pl2303_encode_baud_rate_direct(uint8_t buf[PL2303_LINE_CODING_BAUDRATE_BUFSIZE], uint32_t baud) {
|
|
uint32_t baud_le = tu_htole32(baud);
|
|
buf[0] = (uint8_t) ( baud_le & 0xff);
|
|
buf[1] = (uint8_t) ((baud_le >> 8) & 0xff);
|
|
buf[2] = (uint8_t) ((baud_le >> 16) & 0xff);
|
|
buf[3] = (uint8_t) ((baud_le >> 24) & 0xff);
|
|
|
|
return baud;
|
|
}
|
|
|
|
static uint32_t pl2303_encode_baud_rate_divisor(uint8_t buf[PL2303_LINE_CODING_BAUDRATE_BUFSIZE], uint32_t baud) {
|
|
uint32_t baseline, mantissa, exponent;
|
|
|
|
/*
|
|
* Apparently the formula is:
|
|
* baudrate = 12M * 32 / (mantissa * 4^exponent)
|
|
* where
|
|
* mantissa = buf[8:0]
|
|
* exponent = buf[11:9]
|
|
*/
|
|
baseline = 12000000 * 32;
|
|
mantissa = baseline / baud;
|
|
if (mantissa == 0)
|
|
mantissa = 1; /* Avoid dividing by zero if baud > 32 * 12M. */
|
|
exponent = 0;
|
|
while (mantissa >= 512) {
|
|
if (exponent < 7) {
|
|
mantissa >>= 2; /* divide by 4 */
|
|
exponent++;
|
|
} else {
|
|
/* Exponent is maxed. Trim mantissa and leave. */
|
|
mantissa = 511;
|
|
break;
|
|
}
|
|
}
|
|
|
|
buf[3] = 0x80;
|
|
buf[2] = 0;
|
|
buf[1] = (uint8_t) ((exponent << 1 | mantissa >> 8) & 0xff);
|
|
buf[0] = (uint8_t) (mantissa & 0xff);
|
|
|
|
/* Calculate and return the exact baud rate. */
|
|
baud = (baseline / mantissa) >> (exponent << 1);
|
|
|
|
return baud;
|
|
}
|
|
|
|
static uint32_t pl2303_encode_baud_rate_divisor_alt(uint8_t buf[PL2303_LINE_CODING_BAUDRATE_BUFSIZE], uint32_t baud) {
|
|
uint32_t baseline, mantissa, exponent;
|
|
|
|
/*
|
|
* Apparently, for the TA version the formula is:
|
|
* baudrate = 12M * 32 / (mantissa * 2^exponent)
|
|
* where
|
|
* mantissa = buf[10:0]
|
|
* exponent = buf[15:13 16]
|
|
*/
|
|
baseline = 12000000 * 32;
|
|
mantissa = baseline / baud;
|
|
if (mantissa == 0) {
|
|
mantissa = 1; /* Avoid dividing by zero if baud > 32 * 12M. */
|
|
}
|
|
exponent = 0;
|
|
while (mantissa >= 2048) {
|
|
if (exponent < 15) {
|
|
mantissa >>= 1; /* divide by 2 */
|
|
exponent++;
|
|
} else {
|
|
/* Exponent is maxed. Trim mantissa and leave. */
|
|
mantissa = 2047;
|
|
break;
|
|
}
|
|
}
|
|
|
|
buf[3] = 0x80;
|
|
buf[2] = (uint8_t) (exponent & 0x01);
|
|
buf[1] = (uint8_t) (((exponent & (uint32_t) ~0x01) << 4 | mantissa >> 8) & 0xff);
|
|
buf[0] = (uint8_t) (mantissa & 0xff);
|
|
|
|
/* Calculate and return the exact baud rate. */
|
|
baud = (baseline / mantissa) >> exponent;
|
|
|
|
return baud;
|
|
}
|
|
|
|
static bool pl2303_encode_baud_rate(cdch_interface_t *p_cdc, uint8_t buf[PL2303_LINE_CODING_BAUDRATE_BUFSIZE]) {
|
|
uint32_t baud = p_cdc->requested_line.coding.bit_rate;
|
|
uint32_t baud_sup;
|
|
const pl2303_type_data_t* type_data = &pl2303_type_data[p_cdc->pl2303.type];
|
|
|
|
TU_VERIFY(baud && baud <= type_data->max_baud_rate);
|
|
/*
|
|
* Use direct method for supported baud rates, otherwise use divisors.
|
|
* Newer chip types do not support divisor encoding.
|
|
*/
|
|
if (type_data->no_divisors) {
|
|
baud_sup = baud;
|
|
} else {
|
|
baud_sup = pl2303_get_supported_baud_rate(baud);
|
|
}
|
|
|
|
if (baud == baud_sup) {
|
|
baud = pl2303_encode_baud_rate_direct(buf, baud);
|
|
} else if (type_data->alt_divisors) {
|
|
baud = pl2303_encode_baud_rate_divisor_alt(buf, baud);
|
|
} else {
|
|
baud = pl2303_encode_baud_rate_divisor(buf, baud);
|
|
}
|
|
TU_LOG_CDC(p_cdc, "real baudrate %lu", baud);
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif // CFG_TUH_CDC_PL2303
|
|
|
|
#endif
|