Files
tinyUSB/src/class/msc/msc_device.c

933 lines
33 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if (CFG_TUD_ENABLED && CFG_TUD_MSC)
#include "device/dcd.h" // for faking dcd_event_xfer_complete
#include "device/usbd.h"
#include "device/usbd_pvt.h"
#include "msc_device.h"
// Level where CFG_TUSB_DEBUG must be at least for this driver is logged
#ifndef CFG_TUD_MSC_LOG_LEVEL
#define CFG_TUD_MSC_LOG_LEVEL CFG_TUD_LOG_LEVEL
#endif
#define TU_LOG_DRV(...) TU_LOG(CFG_TUD_MSC_LOG_LEVEL, __VA_ARGS__)
//--------------------------------------------------------------------+
// Weak stubs: invoked if no strong implementation is available
//--------------------------------------------------------------------+
TU_ATTR_WEAK void tud_msc_inquiry_cb(uint8_t lun, uint8_t vendor_id[8], uint8_t product_id[16], uint8_t product_rev[4]) {
(void) lun; (void) vendor_id; (void) product_id; (void) product_rev;
}
TU_ATTR_WEAK uint32_t tud_msc_inquiry2_cb(uint8_t lun, scsi_inquiry_resp_t* inquiry_resp) {
(void) lun; (void) inquiry_resp;
return 0;
}
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
enum {
MSC_STAGE_CMD = 0,
MSC_STAGE_DATA,
MSC_STAGE_STATUS,
MSC_STAGE_STATUS_SENT,
MSC_STAGE_NEED_RESET,
};
typedef struct {
TU_ATTR_ALIGNED(4) msc_cbw_t cbw; // 31 bytes
uint8_t rhport;
TU_ATTR_ALIGNED(4) msc_csw_t csw; // 13 bytes
uint8_t itf_num;
uint8_t ep_in;
uint8_t ep_out;
uint32_t total_len; // byte to be transferred, can be smaller than total_bytes in cbw
uint32_t xferred_len; // numbered of bytes transferred so far in the Data Stage
// Bulk Only Transfer (BOT) Protocol
uint8_t stage;
// SCSI Sense Response Data
uint8_t sense_key;
uint8_t add_sense_code;
uint8_t add_sense_qualifier;
uint8_t pending_io; // pending async IO
}mscd_interface_t;
static mscd_interface_t _mscd_itf;
CFG_TUD_MEM_SECTION static struct {
TUD_EPBUF_DEF(buf, CFG_TUD_MSC_EP_BUFSIZE);
} _mscd_epbuf;
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_t* buffer, uint32_t bufsize);
static void proc_read10_cmd(mscd_interface_t* p_msc);
static void proc_read_io_data(mscd_interface_t* p_msc, int32_t nbytes);
static void proc_write10_cmd(mscd_interface_t* p_msc);
static void proc_write10_host_data(mscd_interface_t* p_msc, uint32_t xferred_bytes);
static void proc_write_io_data(mscd_interface_t* p_msc, uint32_t xferred_bytes, int32_t nbytes);
static bool proc_stage_status(mscd_interface_t* p_msc);
TU_ATTR_ALWAYS_INLINE static inline bool is_data_in(uint8_t dir) {
return tu_bit_test(dir, 7);
}
static inline bool send_csw(mscd_interface_t* p_msc) {
// Data residue is always = host expect - actual transferred
uint8_t rhport = p_msc->rhport;
p_msc->csw.data_residue = p_msc->cbw.total_bytes - p_msc->xferred_len;
p_msc->stage = MSC_STAGE_STATUS_SENT;
memcpy(_mscd_epbuf.buf, &p_msc->csw, sizeof(msc_csw_t));
return usbd_edpt_xfer(rhport, p_msc->ep_in , _mscd_epbuf.buf, sizeof(msc_csw_t));
}
static inline bool prepare_cbw(mscd_interface_t* p_msc) {
uint8_t rhport = p_msc->rhport;
p_msc->stage = MSC_STAGE_CMD;
return usbd_edpt_xfer(rhport, p_msc->ep_out, _mscd_epbuf.buf, sizeof(msc_cbw_t));
}
static void fail_scsi_op(mscd_interface_t* p_msc, uint8_t status) {
msc_cbw_t const * p_cbw = &p_msc->cbw;
msc_csw_t * p_csw = &p_msc->csw;
uint8_t rhport = p_msc->rhport;
p_csw->status = status;
p_csw->data_residue = p_msc->cbw.total_bytes - p_msc->xferred_len;
p_msc->stage = MSC_STAGE_STATUS;
// failed but sense key is not set: default to Illegal Request
if (p_msc->sense_key == 0) {
tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00);
}
// If there is data stage and not yet complete, stall it
if (p_cbw->total_bytes && p_csw->data_residue) {
if (is_data_in(p_cbw->dir)) {
usbd_edpt_stall(rhport, p_msc->ep_in);
} else {
usbd_edpt_stall(rhport, p_msc->ep_out);
}
}
}
static inline uint32_t rdwr10_get_lba(uint8_t const command[]) {
// use offsetof to avoid pointer to the odd/unaligned address
const uint32_t lba = tu_unaligned_read32(command + offsetof(scsi_write10_t, lba));
return tu_ntohl(lba); // lba is in Big Endian
}
static inline uint16_t rdwr10_get_blockcount(msc_cbw_t const* cbw) {
uint16_t const block_count = tu_unaligned_read16(cbw->command + offsetof(scsi_write10_t, block_count));
return tu_ntohs(block_count);
}
static inline uint16_t rdwr10_get_blocksize(msc_cbw_t const* cbw) {
// first extract block count in the command
uint16_t const block_count = rdwr10_get_blockcount(cbw);
if (block_count == 0) {
return 0; // invalid block count
}
return (uint16_t) (cbw->total_bytes / block_count);
}
static uint8_t rdwr10_validate_cmd(msc_cbw_t const* cbw) {
uint8_t status = MSC_CSW_STATUS_PASSED;
uint16_t const block_count = rdwr10_get_blockcount(cbw);
if (cbw->total_bytes == 0) {
if (block_count) {
TU_LOG_DRV(" SCSI case 2 (Hn < Di) or case 3 (Hn < Do) \r\n");
status = MSC_CSW_STATUS_PHASE_ERROR;
} else {
// no data transfer, only exist in complaint test suite
}
} else {
if (SCSI_CMD_READ_10 == cbw->command[0] && !is_data_in(cbw->dir)) {
TU_LOG_DRV(" SCSI case 10 (Ho <> Di)\r\n");
status = MSC_CSW_STATUS_PHASE_ERROR;
} else if (SCSI_CMD_WRITE_10 == cbw->command[0] && is_data_in(cbw->dir)) {
TU_LOG_DRV(" SCSI case 8 (Hi <> Do)\r\n");
status = MSC_CSW_STATUS_PHASE_ERROR;
} else if (0 == block_count) {
TU_LOG_DRV(" SCSI case 4 Hi > Dn (READ10) or case 9 Ho > Dn (WRITE10) \r\n");
status = MSC_CSW_STATUS_FAILED;
} else if (cbw->total_bytes / block_count == 0) {
TU_LOG_DRV(" Computed block size = 0. SCSI case 7 Hi < Di (READ10) or case 13 Ho < Do (WRIT10)\r\n");
status = MSC_CSW_STATUS_PHASE_ERROR;
}
}
return status;
}
static bool proc_stage_status(mscd_interface_t *p_msc) {
uint8_t rhport = p_msc->rhport;
msc_cbw_t const *p_cbw = &p_msc->cbw;
// skip status if epin is currently stalled, will do it when received Clear Stall request
if (!usbd_edpt_stalled(rhport, p_msc->ep_in)) {
if ((p_cbw->total_bytes > p_msc->xferred_len) && is_data_in(p_cbw->dir)) {
// 6.7 The 13 Cases: case 5 (Hi > Di): STALL before status
// TU_LOG_DRV(" SCSI case 5 (Hi > Di): %lu > %lu\r\n", p_cbw->total_bytes, p_msc->xferred_len);
usbd_edpt_stall(rhport, p_msc->ep_in);
} else {
TU_ASSERT(send_csw(p_msc));
}
}
#if TU_CHECK_MCU(OPT_MCU_CXD56)
// WORKAROUND: cxd56 has its own nuttx usb stack which does not forward Set/ClearFeature(Endpoint) to DCD.
// There is no way for us to know when EP is un-stall, therefore we will unconditionally un-stall here and
// hope everything will work
if (usbd_edpt_stalled(rhport, p_msc->ep_in)) {
usbd_edpt_clear_stall(rhport, p_msc->ep_in);
send_csw(p_msc);
}
#endif
return true;
}
//--------------------------------------------------------------------+
// Debug
//--------------------------------------------------------------------+
#if CFG_TUSB_DEBUG >= CFG_TUD_MSC_LOG_LEVEL
TU_ATTR_UNUSED tu_static tu_lookup_entry_t const _msc_scsi_cmd_lookup[] = {
{ .key = SCSI_CMD_TEST_UNIT_READY , .data = "Test Unit Ready" },
{ .key = SCSI_CMD_INQUIRY , .data = "Inquiry" },
{ .key = SCSI_CMD_MODE_SELECT_6 , .data = "Mode_Select 6" },
{ .key = SCSI_CMD_MODE_SENSE_6 , .data = "Mode_Sense 6" },
{ .key = SCSI_CMD_START_STOP_UNIT , .data = "Start Stop Unit" },
{ .key = SCSI_CMD_PREVENT_ALLOW_MEDIUM_REMOVAL , .data = "Prevent/Allow Medium Removal" },
{ .key = SCSI_CMD_READ_CAPACITY_10 , .data = "Read Capacity10" },
{ .key = SCSI_CMD_REQUEST_SENSE , .data = "Request Sense" },
{ .key = SCSI_CMD_READ_FORMAT_CAPACITY , .data = "Read Format Capacity" },
{ .key = SCSI_CMD_READ_10 , .data = "Read10" },
{ .key = SCSI_CMD_WRITE_10 , .data = "Write10" }
};
TU_ATTR_UNUSED tu_static tu_lookup_table_t const _msc_scsi_cmd_table = {
.count = TU_ARRAY_SIZE(_msc_scsi_cmd_lookup),
.items = _msc_scsi_cmd_lookup
};
#endif
//--------------------------------------------------------------------+
// APPLICATION API
//--------------------------------------------------------------------+
bool tud_msc_set_sense(uint8_t lun, uint8_t sense_key, uint8_t add_sense_code, uint8_t add_sense_qualifier) {
(void) lun;
_mscd_itf.sense_key = sense_key;
_mscd_itf.add_sense_code = add_sense_code;
_mscd_itf.add_sense_qualifier = add_sense_qualifier;
return true;
}
TU_ATTR_ALWAYS_INLINE static inline void set_sense_medium_not_present(uint8_t lun) {
// default sense is NOT READY, MEDIUM NOT PRESENT
tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x3A, 0x00);
}
static void proc_async_io_done(void *bytes_io) {
mscd_interface_t *p_msc = &_mscd_itf;
TU_VERIFY(p_msc->pending_io, );
const int32_t nbytes = (int32_t) (intptr_t) bytes_io;
const uint8_t cmd = p_msc->cbw.command[0];
p_msc->pending_io = 0;
switch (cmd) {
case SCSI_CMD_READ_10:
proc_read_io_data(p_msc, nbytes);
break;
case SCSI_CMD_WRITE_10:
proc_write_io_data(p_msc, (uint32_t) nbytes, nbytes);
break;
default: break;
}
// send status if stage is transitioned to STATUS
if (p_msc->stage == MSC_STAGE_STATUS) {
proc_stage_status(p_msc);
}
}
bool tud_msc_async_io_done(int32_t bytes_io, bool in_isr) {
// Precheck to avoid queueing multiple RW done callback
TU_VERIFY(_mscd_itf.pending_io);
if (bytes_io == 0) {
bytes_io = TUD_MSC_RET_ERROR; // 0 is treated as error, no reason to call this with BUSY here
}
usbd_defer_func(proc_async_io_done, (void *) (intptr_t) bytes_io, in_isr);
return true;
}
//--------------------------------------------------------------------+
// USBD Driver API
//--------------------------------------------------------------------+
void mscd_init(void) {
TU_LOG_INT(CFG_TUD_MSC_LOG_LEVEL, sizeof(mscd_interface_t));
tu_memclr(&_mscd_itf, sizeof(mscd_interface_t));
}
bool mscd_deinit(void) {
return true; // nothing to do
}
void mscd_reset(uint8_t rhport) {
(void) rhport;
tu_memclr(&_mscd_itf, sizeof(mscd_interface_t));
}
uint16_t mscd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len) {
// only support SCSI's BOT protocol
TU_VERIFY(TUSB_CLASS_MSC == itf_desc->bInterfaceClass &&
MSC_SUBCLASS_SCSI == itf_desc->bInterfaceSubClass &&
MSC_PROTOCOL_BOT == itf_desc->bInterfaceProtocol, 0);
uint16_t const drv_len = sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t);
TU_ASSERT(max_len >= drv_len, 0); // Max length must be at least 1 interface + 2 endpoints
mscd_interface_t * p_msc = &_mscd_itf;
p_msc->itf_num = itf_desc->bInterfaceNumber;
p_msc->rhport = rhport;
// Open endpoint pair
TU_ASSERT(usbd_open_edpt_pair(rhport, tu_desc_next(itf_desc), 2, TUSB_XFER_BULK, &p_msc->ep_out, &p_msc->ep_in), 0);
// Prepare for Command Block Wrapper
TU_ASSERT(prepare_cbw(p_msc), drv_len);
return drv_len;
}
static void proc_bot_reset(mscd_interface_t* p_msc) {
p_msc->stage = MSC_STAGE_CMD;
p_msc->total_len = 0;
p_msc->xferred_len = 0;
p_msc->sense_key = 0;
p_msc->add_sense_code = 0;
p_msc->add_sense_qualifier = 0;
}
// Invoked when a control transfer occurred on an interface of this class
// Driver response accordingly to the request and the transfer stage (setup/data/ack)
// return false to stall control endpoint (e.g unsupported request)
bool mscd_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t const * request) {
if (stage != CONTROL_STAGE_SETUP) {
return true; // nothing to do with DATA & ACK stage
}
mscd_interface_t* p_msc = &_mscd_itf;
// Clear Endpoint Feature (stall) for recovery
if ( TUSB_REQ_TYPE_STANDARD == request->bmRequestType_bit.type &&
TUSB_REQ_RCPT_ENDPOINT == request->bmRequestType_bit.recipient &&
TUSB_REQ_CLEAR_FEATURE == request->bRequest &&
TUSB_REQ_FEATURE_EDPT_HALT == request->wValue ) {
uint8_t const ep_addr = tu_u16_low(request->wIndex);
if (p_msc->stage == MSC_STAGE_NEED_RESET) {
// reset recovery is required to recover from this stage
// Clear Stall request cannot resolve this -> continue to stall endpoint
usbd_edpt_stall(rhport, ep_addr);
} else {
if (ep_addr == p_msc->ep_in) {
if (p_msc->stage == MSC_STAGE_STATUS) {
// resume sending SCSI status if we are in this stage previously before stalled
TU_ASSERT(send_csw(p_msc));
}
} else if (ep_addr == p_msc->ep_out) {
if (p_msc->stage == MSC_STAGE_CMD) {
// part of reset recovery (probably due to invalid CBW) -> prepare for new command
// Note: skip if already queued previously
if (usbd_edpt_ready(rhport, p_msc->ep_out)) {
TU_ASSERT(prepare_cbw(p_msc));
}
}
}
}
return true;
}
// From this point only handle class request only
TU_VERIFY(request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS);
switch ( request->bRequest ) {
case MSC_REQ_RESET:
TU_LOG_DRV(" MSC BOT Reset\r\n");
TU_VERIFY(request->wValue == 0 && request->wLength == 0);
proc_bot_reset(p_msc); // driver state reset
tud_control_status(rhport, request);
break;
case MSC_REQ_GET_MAX_LUN: {
TU_LOG_DRV(" MSC Get Max Lun\r\n");
TU_VERIFY(request->wValue == 0 && request->wLength == 1);
uint8_t maxlun = 1;
if (tud_msc_get_maxlun_cb) {
maxlun = tud_msc_get_maxlun_cb();
}
TU_VERIFY(maxlun);
maxlun--; // MAX LUN is minus 1 by specs
tud_control_xfer(rhport, request, &maxlun, 1);
break;
}
default: return false; // stall unsupported request
}
return true;
}
bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes) {
(void) event;
mscd_interface_t* p_msc = &_mscd_itf;
msc_cbw_t * p_cbw = &p_msc->cbw;
msc_csw_t * p_csw = &p_msc->csw;
switch (p_msc->stage) {
case MSC_STAGE_CMD: {
//------------- new CBW received -------------//
// Complete IN while waiting for CMD is usually Status of previous SCSI op, ignore it
if (ep_addr != p_msc->ep_out) {
return true;
}
const uint32_t signature = tu_le32toh(tu_unaligned_read32(_mscd_epbuf.buf));
if (!(xferred_bytes == sizeof(msc_cbw_t) && signature == MSC_CBW_SIGNATURE)) {
// BOT 6.6.1 If CBW is not valid stall both endpoints until reset recovery
TU_LOG_DRV(" SCSI CBW is not valid\r\n");
p_msc->stage = MSC_STAGE_NEED_RESET;
usbd_edpt_stall(rhport, p_msc->ep_in);
usbd_edpt_stall(rhport, p_msc->ep_out);
return false;
}
memcpy(p_cbw, _mscd_epbuf.buf, sizeof(msc_cbw_t));
TU_LOG_DRV(" SCSI Command [Lun%u]: %s\r\n", p_cbw->lun, tu_lookup_find(&_msc_scsi_cmd_table, p_cbw->command[0]));
// TU_LOG_MEM(CFG_TUD_MSC_LOG_LEVEL, p_cbw, xferred_bytes, 2);
p_csw->signature = MSC_CSW_SIGNATURE;
p_csw->tag = p_cbw->tag;
p_csw->data_residue = 0;
p_csw->status = MSC_CSW_STATUS_PASSED;
/*------------- Parse command and prepare DATA -------------*/
p_msc->stage = MSC_STAGE_DATA;
p_msc->total_len = p_cbw->total_bytes;
p_msc->xferred_len = 0;
// Read10 or Write10
if ((SCSI_CMD_READ_10 == p_cbw->command[0]) || (SCSI_CMD_WRITE_10 == p_cbw->command[0])) {
uint8_t const status = rdwr10_validate_cmd(p_cbw);
if (status != MSC_CSW_STATUS_PASSED) {
fail_scsi_op(p_msc, status);
} else if (p_cbw->total_bytes) {
if (SCSI_CMD_READ_10 == p_cbw->command[0]) {
proc_read10_cmd(p_msc);
} else {
proc_write10_cmd(p_msc);
}
} else {
// no data transfer, only exist in complaint test suite
p_msc->stage = MSC_STAGE_STATUS;
}
} else {
// For other SCSI commands
// 1. OUT : queue transfer (invoke app callback after done)
// 2. IN & Zero: Process if is built-in, else Invoke app callback. Skip DATA if zero length
if ((p_cbw->total_bytes > 0) && !is_data_in(p_cbw->dir)) {
if (p_cbw->total_bytes > CFG_TUD_MSC_EP_BUFSIZE) {
TU_LOG_DRV(" SCSI reject non READ10/WRITE10 with large data\r\n");
fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED);
} else {
// Didn't check for case 9 (Ho > Dn), which requires examining scsi command first
// but it is OK to just receive data then responded with failed status
TU_ASSERT(usbd_edpt_xfer(rhport, p_msc->ep_out, _mscd_epbuf.buf, (uint16_t) p_msc->total_len));
}
} else {
// First process if it is a built-in commands
int32_t resplen = proc_builtin_scsi(p_cbw->lun, p_cbw->command, _mscd_epbuf.buf, CFG_TUD_MSC_EP_BUFSIZE);
// Invoke user callback if not built-in
if ((resplen < 0) && (p_msc->sense_key == 0)) {
resplen = tud_msc_scsi_cb(p_cbw->lun, p_cbw->command, _mscd_epbuf.buf, (uint16_t)p_msc->total_len);
}
if (resplen < 0) {
// unsupported command
TU_LOG_DRV(" SCSI unsupported or failed command\r\n");
fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED);
} else if (resplen == 0) {
if (p_cbw->total_bytes) {
// 6.7 The 13 Cases: case 4 (Hi > Dn)
// TU_LOG_DRV(" SCSI case 4 (Hi > Dn): %lu\r\n", p_cbw->total_bytes);
fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED);
} else {
// case 1 Hn = Dn: all good
p_msc->stage = MSC_STAGE_STATUS;
}
} else {
if (p_cbw->total_bytes == 0) {
// 6.7 The 13 Cases: case 2 (Hn < Di)
// TU_LOG_DRV(" SCSI case 2 (Hn < Di): %lu\r\n", p_cbw->total_bytes);
fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED);
} else {
// cannot return more than host expect
p_msc->total_len = tu_min32((uint32_t)resplen, p_cbw->total_bytes);
TU_ASSERT(usbd_edpt_xfer(rhport, p_msc->ep_in, _mscd_epbuf.buf, (uint16_t) p_msc->total_len));
}
}
}
}
break;
}
case MSC_STAGE_DATA:
TU_LOG_DRV(" SCSI Data [Lun%u]\r\n", p_cbw->lun);
TU_ASSERT(xferred_bytes <= CFG_TUD_MSC_EP_BUFSIZE); // sanity check to avoid buffer overflow
// TU_LOG_MEM(CFG_TUD_MSC_LOG_LEVEL, _mscd_epbuf.buf, xferred_bytes, 2);
if (SCSI_CMD_READ_10 == p_cbw->command[0]) {
p_msc->xferred_len += xferred_bytes;
if ( p_msc->xferred_len >= p_msc->total_len ) {
// Data Stage is complete
p_msc->stage = MSC_STAGE_STATUS;
}else {
proc_read10_cmd(p_msc);
}
} else if (SCSI_CMD_WRITE_10 == p_cbw->command[0]) {
proc_write10_host_data(p_msc, xferred_bytes);
} else {
p_msc->xferred_len += xferred_bytes;
// OUT transfer, invoke callback if needed
if ( !is_data_in(p_cbw->dir) ) {
int32_t cb_result = tud_msc_scsi_cb(p_cbw->lun, p_cbw->command, _mscd_epbuf.buf, (uint16_t) p_msc->total_len);
if ( cb_result < 0 ) {
// unsupported command
TU_LOG_DRV(" SCSI unsupported command\r\n");
fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED);
}else {
// TODO haven't implement this scenario any further yet
}
}
if ( p_msc->xferred_len >= p_msc->total_len ) {
// Data Stage is complete
p_msc->stage = MSC_STAGE_STATUS;
} else {
// This scenario with command that take more than one transfer is already rejected at Command stage
TU_BREAKPOINT();
}
}
break;
case MSC_STAGE_STATUS:
// processed immediately after this switch, supposedly to be empty
break;
case MSC_STAGE_STATUS_SENT:
// Status phase is complete
if ((ep_addr == p_msc->ep_in) && (xferred_bytes == sizeof(msc_csw_t))) {
TU_LOG_DRV(" SCSI Status [Lun%u] = %u\r\n", p_cbw->lun, p_csw->status);
// TU_LOG_MEM(CFG_TUD_MSC_LOG_LEVEL, p_csw, xferred_bytes, 2);
// Invoke complete callback if defined
// Note: There is racing issue with samd51 + qspi flash testing with arduino
// if complete_cb() is invoked after queuing the status.
switch (p_cbw->command[0]) {
case SCSI_CMD_READ_10:
if (tud_msc_read10_complete_cb) {
tud_msc_read10_complete_cb(p_cbw->lun);
}
break;
case SCSI_CMD_WRITE_10:
if (tud_msc_write10_complete_cb) {
tud_msc_write10_complete_cb(p_cbw->lun);
}
break;
default:
if (tud_msc_scsi_complete_cb) {
tud_msc_scsi_complete_cb(p_cbw->lun, p_cbw->command);
}
break;
}
TU_ASSERT(prepare_cbw(p_msc));
} else {
// Any xfer ended here is considered unknown error, ignore it
TU_LOG1(" Warning expect SCSI Status but received unknown data\r\n");
}
break;
default: break;
}
if (p_msc->stage == MSC_STAGE_STATUS) {
TU_ASSERT(proc_stage_status(p_msc));
}
return true;
}
/*------------------------------------------------------------------*/
/* SCSI Command Process
*------------------------------------------------------------------*/
// return response's length (copied to buffer). Negative if it is not an built-in command or indicate Failed status (CSW)
// In case of a failed status, sense key must be set for reason of failure
static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_t* buffer, uint32_t bufsize) {
(void)bufsize; // TODO refractor later
int32_t resplen;
mscd_interface_t* p_msc = &_mscd_itf;
switch (scsi_cmd[0]) {
case SCSI_CMD_TEST_UNIT_READY:
resplen = 0;
if (!tud_msc_test_unit_ready_cb(lun)) {
// Failed status response
resplen = -1;
// set default sense if not set by callback
if (p_msc->sense_key == 0) {
set_sense_medium_not_present(lun);
}
}
break;
case SCSI_CMD_START_STOP_UNIT:
resplen = 0;
if (tud_msc_start_stop_cb) {
scsi_start_stop_unit_t const* start_stop = (scsi_start_stop_unit_t const*)scsi_cmd;
if (!tud_msc_start_stop_cb(lun, start_stop->power_condition, start_stop->start, start_stop->load_eject)) {
// Failed status response
resplen = -1;
// set default sense if not set by callback
if (p_msc->sense_key == 0) {
set_sense_medium_not_present(lun);
}
}
}
break;
case SCSI_CMD_PREVENT_ALLOW_MEDIUM_REMOVAL:
resplen = 0;
if (tud_msc_prevent_allow_medium_removal_cb) {
scsi_prevent_allow_medium_removal_t const* prevent_allow = (scsi_prevent_allow_medium_removal_t const*)scsi_cmd;
if (!tud_msc_prevent_allow_medium_removal_cb(lun, prevent_allow->prohibit_removal, prevent_allow->control)) {
// Failed status response
resplen = -1;
// set default sense if not set by callback
if (p_msc->sense_key == 0) {
set_sense_medium_not_present(lun);
}
}
}
break;
case SCSI_CMD_READ_CAPACITY_10: {
uint32_t block_count;
uint32_t block_size;
uint16_t block_size_u16;
tud_msc_capacity_cb(lun, &block_count, &block_size_u16);
block_size = (uint32_t)block_size_u16;
// Invalid block size/count from callback, possibly unit is not ready
// stall this request, set sense key to NOT READY
if (block_count == 0 || block_size == 0) {
resplen = -1;
// set default sense if not set by callback
if (p_msc->sense_key == 0) {
set_sense_medium_not_present(lun);
}
} else {
scsi_read_capacity10_resp_t read_capa10;
read_capa10.last_lba = tu_htonl(block_count-1);
read_capa10.block_size = tu_htonl(block_size);
resplen = sizeof(read_capa10);
TU_VERIFY(0 == tu_memcpy_s(buffer, bufsize, &read_capa10, (size_t) resplen));
}
}
break;
case SCSI_CMD_READ_FORMAT_CAPACITY: {
scsi_read_format_capacity_data_t read_fmt_capa = {
.list_length = 8,
.block_num = 0,
.descriptor_type = 2, // formatted media
.block_size_u16 = 0
};
uint32_t block_count;
uint16_t block_size;
tud_msc_capacity_cb(lun, &block_count, &block_size);
// Invalid block size/count from callback, possibly unit is not ready
// stall this request, set sense key to NOT READY
if (block_count == 0 || block_size == 0) {
resplen = -1;
// set default sense if not set by callback
if (p_msc->sense_key == 0) {
set_sense_medium_not_present(lun);
}
} else {
read_fmt_capa.block_num = tu_htonl(block_count);
read_fmt_capa.block_size_u16 = tu_htons(block_size);
resplen = sizeof(read_fmt_capa);
TU_VERIFY(0 == tu_memcpy_s(buffer, bufsize, &read_fmt_capa, (size_t) resplen));
}
}
break;
case SCSI_CMD_INQUIRY: {
scsi_inquiry_resp_t *inquiry_rsp = (scsi_inquiry_resp_t *) buffer;
tu_memclr(inquiry_rsp, sizeof(scsi_inquiry_resp_t));
inquiry_rsp->is_removable = 1;
inquiry_rsp->version = 2;
inquiry_rsp->response_data_format = 2;
inquiry_rsp->additional_length = sizeof(scsi_inquiry_resp_t) - 5;
resplen = (int32_t) tud_msc_inquiry2_cb(lun, inquiry_rsp);
if (resplen == 0) {
// stub callback with no response, use v1 callback
tud_msc_inquiry_cb(lun, inquiry_rsp->vendor_id, inquiry_rsp->product_id, inquiry_rsp->product_rev);
resplen = sizeof(scsi_inquiry_resp_t);
}
}
break;
case SCSI_CMD_MODE_SENSE_6: {
scsi_mode_sense6_resp_t mode_resp = {
.data_len = 3,
.medium_type = 0,
.write_protected = false,
.reserved = 0,
.block_descriptor_len = 0 // no block descriptor are included
};
bool writable = true;
if (tud_msc_is_writable_cb) {
writable = tud_msc_is_writable_cb(lun);
}
mode_resp.write_protected = !writable;
resplen = sizeof(mode_resp);
TU_VERIFY(0 == tu_memcpy_s(buffer, bufsize, &mode_resp, (size_t) resplen));
}
break;
case SCSI_CMD_REQUEST_SENSE: {
scsi_sense_fixed_resp_t sense_rsp = {
.response_code = 0x70, // current, fixed format
.valid = 1
};
sense_rsp.add_sense_len = sizeof(scsi_sense_fixed_resp_t) - 8;
sense_rsp.sense_key = (uint8_t)(p_msc->sense_key & 0x0F);
sense_rsp.add_sense_code = p_msc->add_sense_code;
sense_rsp.add_sense_qualifier = p_msc->add_sense_qualifier;
resplen = sizeof(sense_rsp);
TU_VERIFY(0 == tu_memcpy_s(buffer, bufsize, &sense_rsp, (size_t) resplen));
// request sense callback could overwrite the sense data
if (tud_msc_request_sense_cb) {
resplen = tud_msc_request_sense_cb(lun, buffer, (uint16_t)bufsize);
}
// Clear sense data after copy
tud_msc_set_sense(lun, 0, 0, 0);
}
break;
default: resplen = -1;
break;
}
return resplen;
}
static void proc_read10_cmd(mscd_interface_t* p_msc) {
msc_cbw_t const* p_cbw = &p_msc->cbw;
uint16_t const block_sz = rdwr10_get_blocksize(p_cbw); // already verified non-zero
// Adjust lba & offset with transferred bytes
uint32_t const lba = rdwr10_get_lba(p_cbw->command) + (p_msc->xferred_len / block_sz);
uint32_t const offset = p_msc->xferred_len % block_sz;
// remaining bytes capped at class buffer
int32_t nbytes = (int32_t)tu_min32(CFG_TUD_MSC_EP_BUFSIZE, p_cbw->total_bytes - p_msc->xferred_len);
p_msc->pending_io = 1;
nbytes = tud_msc_read10_cb(p_cbw->lun, lba, offset, _mscd_epbuf.buf, (uint32_t)nbytes);
if (nbytes != TUD_MSC_RET_ASYNC) {
p_msc->pending_io = 0;
proc_read_io_data(p_msc, nbytes);
}
}
static void proc_read_io_data(mscd_interface_t* p_msc, int32_t nbytes) {
const uint8_t rhport = p_msc->rhport;
if (nbytes > 0) {
TU_ASSERT(usbd_edpt_xfer(rhport, p_msc->ep_in, _mscd_epbuf.buf, (uint16_t) nbytes),);
} else {
// nbytes is status
switch (nbytes) {
case TUD_MSC_RET_ERROR:
// error -> endpoint is stalled & status in CSW set to failed
TU_LOG_DRV(" IO read() failed\r\n");
set_sense_medium_not_present(p_msc->cbw.lun);
fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED);
break;
case TUD_MSC_RET_BUSY:
// not ready yet -> fake a transfer complete so that this driver callback will fire again
dcd_event_xfer_complete(rhport, p_msc->ep_in, 0, XFER_RESULT_SUCCESS, false);
break;
default: break;
}
}
}
static void proc_write10_cmd(mscd_interface_t* p_msc) {
msc_cbw_t const* p_cbw = &p_msc->cbw;
bool writable = true;
if (tud_msc_is_writable_cb) {
writable = tud_msc_is_writable_cb(p_cbw->lun);
}
if (!writable) {
// Not writable, complete this SCSI op with error
// Sense = Write protected
tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_DATA_PROTECT, 0x27, 0x00);
fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED);
return;
}
// remaining bytes capped at class buffer
uint16_t nbytes = (uint16_t)tu_min32(CFG_TUD_MSC_EP_BUFSIZE, p_cbw->total_bytes - p_msc->xferred_len);
// Write10 callback will be called later when usb transfer complete
TU_ASSERT(usbd_edpt_xfer(p_msc->rhport, p_msc->ep_out, _mscd_epbuf.buf, nbytes),);
}
// process new data arrived from WRITE10
static void proc_write10_host_data(mscd_interface_t* p_msc, uint32_t xferred_bytes) {
msc_cbw_t const* p_cbw = &p_msc->cbw;
uint16_t const block_sz = rdwr10_get_blocksize(p_cbw); // already verified non-zero
// Adjust lba & offset with transferred bytes
uint32_t const lba = rdwr10_get_lba(p_cbw->command) + (p_msc->xferred_len / block_sz);
uint32_t const offset = p_msc->xferred_len % block_sz;
p_msc->pending_io = 1;
int32_t nbytes = tud_msc_write10_cb(p_cbw->lun, lba, offset, _mscd_epbuf.buf, xferred_bytes);
if (nbytes != TUD_MSC_RET_ASYNC) {
p_msc->pending_io = 0;
proc_write_io_data(p_msc, xferred_bytes, nbytes);
}
}
static void proc_write_io_data(mscd_interface_t* p_msc, uint32_t xferred_bytes, int32_t nbytes) {
if (nbytes < 0) {
// nbytes is status
switch (nbytes) {
case TUD_MSC_RET_ERROR:
// IO error -> failed this scsi op
TU_LOG_DRV(" IO write() failed\r\n");
set_sense_medium_not_present(p_msc->cbw.lun);
fail_scsi_op(p_msc, MSC_CSW_STATUS_FAILED);
break;
default: break;
}
} else {
if ((uint32_t)nbytes < xferred_bytes) {
// Application consume less than what we got including TUD_MSC_RET_BUSY (0)
const uint32_t left_over = xferred_bytes - (uint32_t)nbytes;
if (nbytes > 0) {
memmove(_mscd_epbuf.buf, _mscd_epbuf.buf + nbytes, left_over);
}
// fake a transfer complete with adjusted parameters --> callback will be invoked with adjusted parameters
dcd_event_xfer_complete(p_msc->rhport, p_msc->ep_out, left_over, XFER_RESULT_SUCCESS, false);
} else {
// Application consume all bytes in our buffer
p_msc->xferred_len += xferred_bytes;
if (p_msc->xferred_len >= p_msc->total_len) {
// Data Stage is complete
p_msc->stage = MSC_STAGE_STATUS;
} else {
// prepare to receive more data from host
proc_write10_cmd(p_msc);
}
}
}
}
#endif