Files
tinyUSB/hw/mcu/nxp/lpc_chip_13xx/src/uart_13xx.c
2018-12-07 14:49:07 +07:00

282 lines
8.3 KiB
C

/*
* @brief LPC13xx UART chip driver
*
* @note
* Copyright(C) NXP Semiconductors, 2012
* All rights reserved.
*
* @par
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* LPC products. This software is supplied "AS IS" without any warranties of
* any kind, and NXP Semiconductors and its licensor disclaim any and
* all warranties, express or implied, including all implied warranties of
* merchantability, fitness for a particular purpose and non-infringement of
* intellectual property rights. NXP Semiconductors assumes no responsibility
* or liability for the use of the software, conveys no license or rights under any
* patent, copyright, mask work right, or any other intellectual property rights in
* or to any products. NXP Semiconductors reserves the right to make changes
* in the software without notification. NXP Semiconductors also makes no
* representation or warranty that such application will be suitable for the
* specified use without further testing or modification.
*
* @par
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors' and its
* licensor's relevant copyrights in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
*/
#include "chip.h"
/*****************************************************************************
* Private types/enumerations/variables
****************************************************************************/
/*****************************************************************************
* Public types/enumerations/variables
****************************************************************************/
/*****************************************************************************
* Private functions
****************************************************************************/
/*****************************************************************************
* Public functions
****************************************************************************/
/* Initializes the pUART peripheral */
void Chip_UART_Init(LPC_USART_T *pUART)
{
Chip_Clock_EnablePeriphClock(SYSCTL_CLOCK_UART0);
Chip_Clock_SetUARTClockDiv(1);
/* Enable FIFOs by default, reset them */
Chip_UART_SetupFIFOS(pUART, (UART_FCR_FIFO_EN | UART_FCR_RX_RS | UART_FCR_TX_RS));
/* Default 8N1, with DLAB disabled */
Chip_UART_ConfigData(pUART, (UART_LCR_WLEN8 | UART_LCR_SBS_1BIT | UART_LCR_PARITY_DIS));
/* Disable fractional divider */
pUART->FDR = 0x10;
}
/* De-initializes the pUART peripheral */
void Chip_UART_DeInit(LPC_USART_T *pUART)
{
(void) pUART;
Chip_Clock_DisablePeriphClock(SYSCTL_CLOCK_UART0);
}
/* Transmit a byte array through the UART peripheral (non-blocking) */
int Chip_UART_Send(LPC_USART_T *pUART, const void *data, int numBytes)
{
int sent = 0;
uint8_t *p8 = (uint8_t *) data;
/* Send until the transmit FIFO is full or out of bytes */
while ((sent < numBytes) &&
((Chip_UART_ReadLineStatus(pUART) & UART_LSR_THRE) != 0)) {
Chip_UART_SendByte(pUART, *p8);
p8++;
sent++;
}
return sent;
}
/* Transmit a byte array through the UART peripheral (blocking) */
int Chip_UART_SendBlocking(LPC_USART_T *pUART, const void *data, int numBytes)
{
int pass, sent = 0;
uint8_t *p8 = (uint8_t *) data;
while (numBytes > 0) {
pass = Chip_UART_Send(pUART, p8, numBytes);
numBytes -= pass;
sent += pass;
p8 += pass;
}
return sent;
}
/* Read data through the UART peripheral (non-blocking) */
int Chip_UART_Read(LPC_USART_T *pUART, void *data, int numBytes)
{
int readBytes = 0;
uint8_t *p8 = (uint8_t *) data;
/* Send until the transmit FIFO is full or out of bytes */
while ((readBytes < numBytes) &&
((Chip_UART_ReadLineStatus(pUART) & UART_LSR_RDR) != 0)) {
*p8 = Chip_UART_ReadByte(pUART);
p8++;
readBytes++;
}
return readBytes;
}
/* Read data through the UART peripheral (blocking) */
int Chip_UART_ReadBlocking(LPC_USART_T *pUART, void *data, int numBytes)
{
int pass, readBytes = 0;
uint8_t *p8 = (uint8_t *) data;
while (readBytes < numBytes) {
pass = Chip_UART_Read(pUART, p8, numBytes);
numBytes -= pass;
readBytes += pass;
p8 += pass;
}
return readBytes;
}
/* Determines and sets best dividers to get a target bit rate */
uint32_t Chip_UART_SetBaud(LPC_USART_T *pUART, uint32_t baudrate)
{
uint32_t div, divh, divl, clkin;
/* Determine UART clock in rate without FDR */
clkin = Chip_Clock_GetMainClockRate();
div = clkin / (baudrate * 16);
/* High and low halves of the divider */
divh = div / 256;
divl = div - (divh * 256);
Chip_UART_EnableDivisorAccess(pUART);
Chip_UART_SetDivisorLatches(pUART, divl, divh);
Chip_UART_DisableDivisorAccess(pUART);
/* Fractional FDR alreadt setup for 1 in UART init */
return clkin / div;
}
/* UART receive-only interrupt handler for ring buffers */
void Chip_UART_RXIntHandlerRB(LPC_USART_T *pUART, RINGBUFF_T *pRB)
{
/* New data will be ignored if data not popped in time */
while (Chip_UART_ReadLineStatus(pUART) & UART_LSR_RDR) {
uint8_t ch = Chip_UART_ReadByte(pUART);
RingBuffer_Insert(pRB, &ch);
}
}
/* UART transmit-only interrupt handler for ring buffers */
void Chip_UART_TXIntHandlerRB(LPC_USART_T *pUART, RINGBUFF_T *pRB)
{
uint8_t ch;
/* Fill FIFO until full or until TX ring buffer is empty */
while ((Chip_UART_ReadLineStatus(pUART) & UART_LSR_THRE) != 0 &&
RingBuffer_Pop(pRB, &ch)) {
Chip_UART_SendByte(pUART, ch);
}
}
/* Populate a transmit ring buffer and start UART transmit */
uint32_t Chip_UART_SendRB(LPC_USART_T *pUART, RINGBUFF_T *pRB, const void *data, int bytes)
{
uint32_t ret;
uint8_t *p8 = (uint8_t *) data;
/* Don't let UART transmit ring buffer change in the UART IRQ handler */
Chip_UART_IntDisable(pUART, UART_IER_THREINT);
/* Move as much data as possible into transmit ring buffer */
ret = RingBuffer_InsertMult(pRB, p8, bytes);
Chip_UART_TXIntHandlerRB(pUART, pRB);
/* Add additional data to transmit ring buffer if possible */
ret += RingBuffer_InsertMult(pRB, (p8 + ret), (bytes - ret));
/* Enable UART transmit interrupt */
Chip_UART_IntEnable(pUART, UART_IER_THREINT);
return ret;
}
/* Copy data from a receive ring buffer */
int Chip_UART_ReadRB(LPC_USART_T *pUART, RINGBUFF_T *pRB, void *data, int bytes)
{
(void) pUART;
return RingBuffer_PopMult(pRB, (uint8_t *) data, bytes);
}
/* UART receive/transmit interrupt handler for ring buffers */
void Chip_UART_IRQRBHandler(LPC_USART_T *pUART, RINGBUFF_T *pRXRB, RINGBUFF_T *pTXRB)
{
/* Handle transmit interrupt if enabled */
if (pUART->IER & UART_IER_THREINT) {
Chip_UART_TXIntHandlerRB(pUART, pTXRB);
/* Disable transmit interrupt if the ring buffer is empty */
if (RingBuffer_IsEmpty(pTXRB)) {
Chip_UART_IntDisable(pUART, UART_IER_THREINT);
}
}
/* Handle receive interrupt */
Chip_UART_RXIntHandlerRB(pUART, pRXRB);
}
/* Determines and sets best dividers to get a target baud rate */
uint32_t Chip_UART_SetBaudFDR(LPC_USART_T *pUART, uint32_t baudrate)
{
uint32_t uClk;
uint32_t dval, mval;
uint32_t dl;
uint32_t rate16 = 16 * baudrate;
uint32_t actualRate = 0;
/* Get Clock rate */
uClk = Chip_Clock_GetMainClockRate();
/* The fractional is calculated as (PCLK % (16 * Baudrate)) / (16 * Baudrate)
* Let's make it to be the ratio DivVal / MulVal
*/
dval = uClk % rate16;
/* The PCLK / (16 * Baudrate) is fractional
* => dval = pclk % rate16
* mval = rate16;
* now mormalize the ratio
* dval / mval = 1 / new_mval
* new_mval = mval / dval
* new_dval = 1
*/
if (dval > 0) {
mval = rate16 / dval;
dval = 1;
/* In case mval still bigger then 4 bits
* no adjustment require
*/
if (mval > 12) {
dval = 0;
}
}
dval &= 0xf;
mval &= 0xf;
dl = uClk / (rate16 + rate16 *dval / mval);
/* Update UART registers */
Chip_UART_EnableDivisorAccess(pUART);
Chip_UART_SetDivisorLatches(pUART, UART_LOAD_DLL(dl), UART_LOAD_DLM(dl));
Chip_UART_DisableDivisorAccess(pUART);
/* Set best fractional divider */
pUART->FDR = (UART_FDR_MULVAL(mval) | UART_FDR_DIVADDVAL(dval));
/* Return actual baud rate */
actualRate = uClk / (16 * dl + 16 * dl * dval / mval);
return actualRate;
}